Skip to main content
Log in

Lyapunov exponents of a class of piecewise continuous systems of fractional order

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we prove that a class of piecewise continuous autonomous systems of fractional order has well-defined Lyapunov exponents. To do so, based on some known results from differential inclusions of integer order and fractional order, as well as differential equations with discontinuous right-hand sides, the corresponding discontinuous initial value problem is approximated by a continuous one with fractional order. Then, the Lyapunov exponents are numerically determined using, for example, Wolf’s algorithm. Three examples of piecewise continuous chaotic systems of fractional order are simulated and analyzed: Sprott’s system, Chen’s system, and Simizu–Morioka’s system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Actually, in the great majority of known examples, with \(g\) being polynomial, it is also a smooth function.

  2. This class of sigmoid functions includes many other examples such as the hyperbolic tangent, the error function, the logistic function, algebraic functions like \(\frac{x}{\sqrt{\delta +x^2}}\), \(\frac{2}{1+e^{-\frac{x}{\delta }}}-1\) [13] and so on.

  3. Because, while the problem is solved in parallel with (13), the initial conditions change, so the usual notation \(x_0\) is replaced with \(x\).

  4. In this paper, the Matlab code fde12.m [40] (an implementation of the predictor-corrector PECE method of Adams–Bashforth–Moulton type presented in [31], which has been suitably modified for the general case with the incommensurate orders) has been utilized.

References

  1. Oseledec, V.I.: Multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems. Trudy MMO 19, 179–210 (1968). (in Russian)

    MathSciNet  Google Scholar 

  2. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kunze, M.: Rigorous methods and numerical results for dry friction problems. In: Wiercigroch, M., de Kraker, B. (eds.) Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities World Scientific Series on Nonlinear Science Series A, Volume 28. World Scientific, Singapore (2000)

    Google Scholar 

  4. Grantham, W.J., Lee, B.: A chaotic limit cycle paradox. Dyn. Control 3, 19–173 (1993)

    MathSciNet  Google Scholar 

  5. Gans, R.F.: When is cutting chaotic? J. Sound Vib. 188, 75–83 (1995)

    Article  Google Scholar 

  6. Li, C., Gong, Z., Qian, D., Chen, Y.Q.: On the bound of the Lyapunov exponents for the fractional differential systems. CHAOS 20, 013127 (2010)

    Article  MathSciNet  Google Scholar 

  7. Zhang, W., Zhou, S., Liao, X., Mai, H., Xiao, K.: Estimate the largest Lyapunov exponent of fractional-order systems. Communications, Circuits and Systems 2008. ICCCAS 2008 International Conference on, 25–27 May 2008, pp. 1121–1124

  8. Caponetto, R., Fazzino, S.: A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 18(1), 22–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cong, N.D., Son, D.T., Tuan, H.T.: On fractional lyapunov exponent for solutions of linear fractional differential equations. Fract. Calc. Appl. Anal. 17(2), 285–306 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266, 19–23 (2000)

    Article  Google Scholar 

  11. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003)

    Article  MATH  Google Scholar 

  12. Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  13. Danca, M.-F.: Continuous approximation of a class of piece-wise continuous systems of fractional order. Int. J. Bif Chaos (2014, accepted)

  14. Cortes, J.: Discontinuous dynamical systems. Control Syst. IEEE 28(3), 36–73 (2008)

    Article  MathSciNet  Google Scholar 

  15. Caputo, M.: Elasticity and Dissipation. Zanichelli, Bologna (1969)

    Google Scholar 

  16. Oldham, K.B., Spanier, J.: The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier Science, Amsterdam (1974)

    MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)

    Article  Google Scholar 

  19. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht (1988)

    Book  MATH  Google Scholar 

  21. Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Aubin, J.-P., Cellina, A.: Diffeerential Inclusions Set-valued Maps and Viability Theory. Springer, Berlin (1984)

    Google Scholar 

  23. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhuser, Boston (1990)

    MATH  Google Scholar 

  24. Zaremba, S.C.: Sur une extension de la notion d’équation différentielle. C. R. Acad. Sci. Paris 199, A545–A548 (1934)

    Google Scholar 

  25. El-Sayed, A.M.A., Ibrahim, A.G.: Multivalued fractional differential equations of arbitrary orders. Appl. Math. Comput. 68, 15–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Henderson, J., Ouaha, A.: A Filippov’s theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. Mediterr. J. Math. 9(3), 453–485 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hendersona, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. Theory Methods Appl. 70(5), 2091–2105 (2009)

    Article  Google Scholar 

  28. Changa, Y.-K., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 49(3–4), 605–609 (2009)

    Article  Google Scholar 

  29. Ważewski, T.: On an optimal control problem. In: Differential Equations and Applications, Conference Proceedings Prague, vol. 1963, pp. 229–242 (1962)

  30. Garrappa, R.: On some generalizations of the implicit Euler method for discontinuous fractional differential equation. Math. Comput. Simul. 95, 213–228 (2014)

    Article  MathSciNet  Google Scholar 

  31. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cellina, A., Solimini, S.: Continuous extensions of selections. Bull. Polish Acad. Sci. Math. 35(9–10), 573–581 (1987)

    MATH  MathSciNet  Google Scholar 

  33. Kastner-Maresch, A., Lempio, F.: Difference methods with selection strategies for differential inclusions. Numer. Funct. Anal. Optim. 14(5–6), 555–572 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Danca, M.-F.: On a class of discontinuous dynamical systems. Miskolc Math. Notes 2(2), 103–116 (2001)

    MATH  MathSciNet  Google Scholar 

  35. Danca, M.-F.: Approach of a class of discontinuous systems of fractional order: existence of solutions. Int. J. Bifurcat. Chaos 21, 3273–3276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Diethelm, K.: The Analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics. Springer, Berlin (2010)

    Google Scholar 

  37. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2012)

    Google Scholar 

  38. Govorukhin, V.: Calculation Lyapunov Exponents for ODE. MATLAB Central File Exchange, file ID:4628 (2004)

  39. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Garrappa, R.: Predictor-corrector PECE method for fractional differential equations. MATLAB Central File Exchange, file ID: 32918 (2012)

  41. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Aziz-Alaoui, M.A., Chen, G.: Asymptotic analysisof a new piece-wise-linear chaotic system. Int. J. Bifurc. Chaos 12(1), 147–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Shimizu, T., Morioka, N.: On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A 76, 201–204 (1980)

    Article  MathSciNet  Google Scholar 

  44. Yu, S., Tang, W.K.S., Lü, J., Chen, G.: Generation of \(nm\)-Wing Lorenz-Like attractors from a modified Shimizu–Morioka model. IEEE Trans. Circuits Syst. II Express Briefs 55(11), 1168–1172 (2008)

    Article  Google Scholar 

  45. Danca, M.-F., Garrappa, R.: Suppressing chaos in discontinuous systems of fractional order by active control. App. Math. Comput. (2014). doi:10.1016/j.amc.2014.10.133

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danca, MF. Lyapunov exponents of a class of piecewise continuous systems of fractional order. Nonlinear Dyn 81, 227–237 (2015). https://doi.org/10.1007/s11071-015-1984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1984-6

Keywords

Navigation