Skip to main content
Log in

A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new hyper-chaotic system is presented in this paper by adding a smooth flux-controlled memristor and a cross-product item into a three-dimensional autonomous chaotic system. It is exciting that this new memristive system can show a four-wing hyper-chaotic attractor with a line equilibrium. The dynamical behaviors of the proposed system are analyzed by Lyapunov exponents, bifurcation diagram and Poincaré maps. Then, by using the topological horseshoe theory and computer-assisted proof, the existence of hyperchaos in the system is verified theoretically. Finally, an electronic circuit is designed to implement the hyper-chaotic memristive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Udaltsov, V., et al.: Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95, 114–118 (2003)

    Article  Google Scholar 

  2. Vicente, R., Daudén, J., Colet, P., Toral, R.: Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 41, 541–548 (2005)

    Article  Google Scholar 

  3. Cafagna, D., Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurc. Chaos 13, 2889–2903 (2003)

    Article  MathSciNet  Google Scholar 

  4. Hsieh, J.-Y., Hwang, C.-C., Wang, A.-P., Li, W.-J.: Controlling hyperchaos of the Rossler system. Int. J. Control 72, 882–886 (1999)

    Article  MathSciNet  Google Scholar 

  5. Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44, 1011–1013 (1997)

    Article  Google Scholar 

  6. Rossler, O.: An equation for hyperchaos. Phys. Lett. A. 71, 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  7. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractors of unidirectionally-coupled Chuas circuits. Int. J. Bifurc. Chaos 4, 477–482 (1994)

    Article  MathSciNet  Google Scholar 

  8. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  9. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  10. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  Google Scholar 

  11. Petras, I., Chen, Y.Q., Coopmans, C.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs 57, 975–979 (2010)

    Article  Google Scholar 

  12. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010)

    Article  Google Scholar 

  13. Grassi, G., Severance, F.L., Miller, D.A.: Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos Solitons Fractals 41, 284–291 (2009)

    Article  Google Scholar 

  14. Cafagna, D., Grassi, G.: Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems. Int. J. Bifurc. Chaos 19, 3329–3338 (2009)

    Article  Google Scholar 

  15. Grassi, G., Severance, F.L., Mashev, E.D., Bazuin, B.J., Miller, D.A.: Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems. Int. J. Bifurc. Chaos 18, 2089–2094 (2008)

    Article  Google Scholar 

  16. Liu, W., Chen, G.: Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor? Int. J. Bifurc. Chaos 14, 1395–1403 (2004)

    Article  Google Scholar 

  17. Teng, L., Iu, H.H., Wang, X., Wang, X.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231–241 (2014)

    Article  Google Scholar 

  18. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)

    Article  Google Scholar 

  20. Bo-Cheng, B., Zhong, L., Jian-Ping, X.: Dynamical analysis of memristor chaotic oscillator. Chin. J. Phys. 59, 3785–3793 (2010)

    Google Scholar 

  21. Fitch, A.L., Yu, D., Iu, H.H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 1250133 (2012)

    Article  Google Scholar 

  22. Iu, H.H.-C., Yu, D., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a Twin-T notch filter. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1337–1344 (2011)

    Article  MathSciNet  Google Scholar 

  23. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  Google Scholar 

  24. Müller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos Solitons Fractals 5, 1671–1681 (1995)

    Article  MathSciNet  Google Scholar 

  25. Björck, Ǎ.: Numerics of gram-schmidt orthogonalization. Linear Algebra Appl. 197, 297–316 (1994)

    Article  MathSciNet  Google Scholar 

  26. Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17, 275–291 (1995)

    Article  MathSciNet  Google Scholar 

  27. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  28. Qi, G., Chen, G., van Wyk, M.A., van Wyk, B.J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38, 705–721 (2008)

    Article  MathSciNet  Google Scholar 

  29. Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010)

    Article  MathSciNet  Google Scholar 

  30. Qi, G., Chen, G.: Analysis and circuit implementation of a new 4D chaotic system. Phys. Lett. A 352, 386–397 (2006)

    Article  Google Scholar 

  31. Yang, X.-S., Tang, Y.: Horseshoes in piecewise continuous maps. Chaos Solitons Fractals 19, 841–845 (2004)

    Article  MathSciNet  Google Scholar 

  32. Yang, X.-S.: Metric horseshoes. Chaos Solitons Fractals 20, 1149–1156 (2004)

    Article  MathSciNet  Google Scholar 

  33. Yang, X.-S., Li, Q.: Existence of horseshoe in a foodweb model. Int. J. Bifurc. Chaos 14, 1847–1852 (2004)

    Article  Google Scholar 

  34. Huang, Y., Yang, X.-S.: Horseshoes in modified Chen’s attractors. Chaos Solitons Fractals 26, 79–85 (2005)

    Article  MathSciNet  Google Scholar 

  35. Qing-Du, L., Song, T.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Chin. J. Phys. 62, 020510 (2013)

    Google Scholar 

  36. Yanchuk, S., Kapitaniak, T.: Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. Phys. Rev. E 64, 056235 (2001)

    Article  Google Scholar 

  37. Yanchuk, S., Kapitaniak, T.: Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A 290, 139–144 (2001)

    Article  Google Scholar 

  38. Kapitaniak, T., Maistrenko, Y., Popovych, S.: Chaos-hyperchaos transition. Phys. Rev. E 62, 1972 (2000)

    Article  Google Scholar 

  39. Li, Q., Tang, S., Yang, X.-S.: Hyperchaotic set in continuous chaos-hyperchaos transition. Commun. Nonlinear Sci. Numer. Simul. 19, 3718–3734 (2014)

    Article  MathSciNet  Google Scholar 

  40. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, vol. 28. CRC Press, Boca Raton (1999)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by Natural Science Foundation of China Grants No. 61174094, Tianjin Nature Science Foundation Grant No. 14JCYBJC18700 and Shandong Provincial Natural Science Foundation Grant No. ZR2012FM034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ma.

Appendices

Appendix 1. A theorem of topological horseshoe

Let \(D\) be a compact region of \({R^q}\), and \(D_i = 1,2,\ldots ,p\), be compact subsets of \(D\). For each \({D_i}\), let \(D_i^1\) and \(D_i^2\) be its two fixed disjointed connected nonempty compact subsets contained in the boundary of \(D_i\). Let \(f:{D_i} \rightarrow {R^q}\) be a piecewise continuous map which is continuous on each \({D_i}\).

Definition 1

[35] A connected subset \(S\) of \({D_i}\) is said to be a separation of \(D_i^1\) and \(D_i^2\), if for any connected subset \(l \subset {D_i}\) with \(l \cap D_i^1 \ne \emptyset \) and \(l \cap D_i^2 \ne \emptyset \), we have \(l \cap S \ne \emptyset \).

Definition 2

[35] We say that \(f:{D_i} \mapsto {D_j}\) is codimension-one crossing with respect to two pairs \((D_i^1,D_i^2)\) and \((D_j^1,D_j^2)\), if \(f(S) \cap {D_j}\) is also a separation of \((D_j^1,D_j^2)\) for each separation \(S\) of \((D_j^1,D_j^2)\).

Theorem 1

[34, 35] If the codimension-one crossing relation \(f:{D_i} \mapsto {D_j}\), holds for \(1 \le i,j \le m\), then there exists a compact invariant set \(K \subset D\), such that \(f|K\) is semiconjugate to the m-shift. Here, the \(m\)-shift is usually denoted by \(\sigma |\sum p\), which is also called the Bernoulli m-shift. The symbolic series space \(\sum p \) is compact, totally disconnected and perfect. A set having these three properties is often defined as a Cantor set, and such a Cantor set frequently appears in the characterization of complex structures of chaotic invariant sets.

Theorem 2

[40] Let \(X\) be a compact metric space and \(f:X \rightarrow X\) be a continuous map. If there exists an invariant set \(K \subset X\) such that \(f|K\) is semiconjugate to the m-shift \(\sigma |p\), then the entropy of \(f\),

$$\begin{aligned} ent(f) \ge ent(\sigma ) = \mathrm{{log(p)}} \end{aligned}$$

In addition, for every positive integer \(k\),

$$\begin{aligned} ent({f^2}) = k \cdot ent(\sigma ) = \mathrm{{log(p)}} \end{aligned}$$

When \(p > 1\), the shift map \(s\) has a positive topological entropy and, therefore, is sensitive to initial conditions, i.e., chaotic. Then, it follows that \(f\) must be chaotic, too.

Sometimes in verifying existence of chaos, the Proposition 1 in this theorem is not easy to be satisfied in practice. So we have the following corollary:

Corollary 1

[35] Suppose that the map \(f:D \rightarrow X\) satisfies the following assumptions:

  1. 1.

    There exists two mutually disjoint compact subsets \({D_1}\) and \({D_2}\) of \(D\), and \({f^\alpha }|{D_1}\) and \({f^\beta }|{D_1}\) are homeomorphisms, where \(\alpha \) and \(\beta \) are positive integers.

  2. 2.

    \({f^\alpha }({D_1}) \mapsto {D_1}\), \({f^\alpha }({D_1}) \mapsto {D_2}\) and \({f^\beta }({D_2}) \mapsto {D_1}\). Then, there exists a compact invariant set \(K \subset D\), such that \({f^{2\alpha + \beta }}|K\) is semiconjugate to 2-shift dynamics, and \({1 \over {2\alpha +\beta }}\log 2\).

Appendix 2. The four vertices of subset \({A_{zou}}\) and \({B_{zou}}\) in terms of \((z,u)\)

When \(k = 7.5\), the four vertices of subset \({A_{zou}}\) are

$$\begin{aligned} \begin{array}{l} (0.4873, - 0.3150),(0.4873, - 0.3485) \\ (0.5204, - 0.3496),(0.5211, - 0.3228) \\ \end{array} \end{aligned}$$

and the four vertices of subset \({B_{zou}}\) are

$$\begin{aligned} \begin{array}{l} (0.6684, - 0.4546),(0.6598, - 0.4993) \\ (0.6742, - 0.5205),(0.6835, - 0.4669) \\ \end{array} \end{aligned}$$

When \(k = 4\), the four vertices of subset \({A_{zou}}\) are

$$\begin{aligned} \begin{array}{l} ( - 0.1932,0.2497),( - 0.1842,0.2828) \\ ( - 0.1302,0.2853),( - 0.1306,0.2513) \\ \end{array} \end{aligned}$$

and the four vertices of subset \({B_{zou}}\) are

$$\begin{aligned} \begin{array}{l} ( - 0.1619,0.3751),( - 0.1619,0.3654) \\ ( - 0.1493,0.3654),( - 0.1500,0.3759) \\ \end{array} \end{aligned}$$

When \(k = 2.5\), the four vertices of subset \({A_{zou}}\) are

$$\begin{aligned} \begin{array}{l} ( - 0.3396, - 0.4986),( - 0.3103, - 0.5487) \\ ( - 0.2733, - 0.5598),( - 0.3118, - 0.4853) \\ \end{array} \end{aligned}$$

and the four vertices of subset \({B_{zou}}\) are

$$\begin{aligned} \begin{array}{l} ( - 0.3172, - 0.3307),( - 0.2795, - 0.3195) \\ ( - 0.2671, - 0.3852),( - 0.2987, - 0.3974) \\ \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Chen, Z., Wang, Z. et al. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn 81, 1275–1288 (2015). https://doi.org/10.1007/s11071-015-2067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2067-4

Keywords

Navigation