Skip to main content
Log in

Artificial neural network-based modeling of brain response to flicker light

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Not only does the modeling of dynamical systems, for instance the biological systems, play an important role in the accurate perception and analysis of these systems, but it also makes the prediction and control of their behavior straightforward. The results of multiple researches in the field of the modeling of biological systems have indicated that the chaotic behavior is a prevalent feature of most complex interactive biological systems. Our results demonstrate that the artificial neural network provides us an effective means to model the underlying dynamics of these systems. In this paper, at first, we represent the results of the use of a multilayer feed-forward neural network to model some famous chaotic systems. The specified neural network is trained with the return maps extracted from the time series. We proceed with the paper by evaluating the accuracy and robustness of our model. The ability of the select neural network to model the dynamics of chosen chaotic systems is verified, even in the presence of noise. Afterwards, we model the brain response to the flicker light. It is known that the brain response to some stimuli such as the flicker light recorded as electroretinogram is an exemplar of chaotic behavior. The need remains, however, for realistic modeling of this behavior of the brain. In this paper, we represent the results of the modeling of this chaotic response by utilizing the proposed neural network. The capability of the neural network to model this specific brain response is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Spiegelman, M.: An introduction to dynamical systems and chaos. Lamont-Doherty Earth Observatory (LDEO), Columbia University, Earth Institute (1997)

  2. Ball, R., Kolokoltsov, V., MacKay, R.S.: Complexity Science: The Warwick Master’s Course. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  3. Korn, H., Faure, P.: Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C. R. Acad. Sci. Ser. III Sci. Vie 324(9), 773–793 (2001)

    Google Scholar 

  4. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)

    Article  Google Scholar 

  5. Freeman, W.J.: Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential. IEEE Trans. Circuits Syst. 35(7), 781–783 (1998)

    Article  MathSciNet  Google Scholar 

  6. Freeman, W.J.: The physiology of perception. Sci. Am. 264(2), 78–85 (1991)

    Article  MathSciNet  Google Scholar 

  7. Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Commun. Nonlinear Sci. Numer. Simul. 20, 469–481 (2015)

    Article  MathSciNet  Google Scholar 

  8. Skarda, C.A., Freeman, W.J.: Chaos and the new science of the brain. Concepts Neurosci. 1(2), 275–285 (1990)

    Google Scholar 

  9. Ferreira, B.B., Savi, M.A., Paula, A.S.: Chaos control applied to cardiac rhythms represented by ECG signals. Phys. Scr. 89(10), 1–18 (2014)

    Google Scholar 

  10. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge Nonlinear Science Series, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  11. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006)

    Article  Google Scholar 

  12. Eliasmith, C., Trujillo, O.: The use and abuse of large-scale brain models. Curr. Opin. Neurobiol. 25, 1–6 (2014)

    Article  Google Scholar 

  13. Hubel, D.: Eye, Brain, and Vision. Scientific American Library Series, Book 22 (1995)

  14. Drápela, J., Šlezingr, J.: A light-flickermeter—part I: design. In: Proceedings of the 11th International Scientific Conference on Electric Power Engineering, pp. 453–458 (2010)

  15. The Society for Neuroscience: Brain facts: a primer on the brain and nervous system. The Society for Neuroscience (2012)

  16. Burns, S.A., Elsner, A., Kreitz, M.R.: Analysis of nonlinearities in the flicker ERG. Optom. Vis. Sci. 69(2), 95–105 (1992)

    Article  Google Scholar 

  17. Crevier, D., Meister, M.: Synchronous period-doubling in flicker vision of salamander and man. J. Neurophysiol. 79, 1869–1878 (1998)

    Google Scholar 

  18. Molaie, M., Falahian, R., Gharibzadeh, S., Jafari, S., Sprott, J.C.: Artificial neural networks: powerful tools for modeling chaotic behavior in the nervous system. Front. Comput. Neuro-sci. 8 (2014)

  19. Gowrisankaran, S., Alexander, K.R.: Stimulus chromatic properties affect period doubling in the human cone flicker ERG. Doc. Ophthalmol. 125(1), 21–29 (2012)

    Article  Google Scholar 

  20. Alexander, K.R., Raghuram, A., McAnany, J.J.: Comparison of spectral measures of period doubling in the cone flicker electro-retinogram. Doc. Ophthalmol. 117(3), 197–203 (2008)

    Article  Google Scholar 

  21. Spiegler, A., Knosche, T.R., Schwab, K., Haueisen, J., Atay, F.M.: Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7(12), 1–17 (2011)

    Article  Google Scholar 

  22. Belusic, G.: Electroretinograms. InTech (2011)

  23. Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)

    Article  Google Scholar 

  24. Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)

    Article  Google Scholar 

  25. Kalogirou, S.A., Mathioulakis, E., Belessiotis, V.: Artificial neural networks for the performance prediction of large solar systems. Renew. Energy 63, 90–97 (2014)

    Article  Google Scholar 

  26. Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy 67(1–2), 17–35 (2000)

    Article  Google Scholar 

  27. Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5(4), 373–401 (2001)

    Article  Google Scholar 

  28. Kalogirou, S.A.: Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29(6), 515–566 (2003)

    Article  Google Scholar 

  29. Sardari, S., Kohanzad, H., Ghavami, G.: Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design. Chemom. Intell. Lab. Syst. 130, 151–158 (2014)

    Article  Google Scholar 

  30. Singh, Y., Chauhan, A.S.: Neural networks in data mining. J. Theor. Appl. Inf. Technol. 5(6), 37–42 (2009)

    Google Scholar 

  31. Rosipal, K.N.: Overview and recent advances in partial least squares. Subspace, Latent Structure and Feature Selection (SLSFS), Lecture Notes in Computer Science (LNCS), vol. 3940, pp. 34–51 (2006)

  32. Jenkins, J.L., Bender, A., Davies, J.W.: In silico target fishing: predicting biological targets from chemical structure. Drug Discov. Today 3(4), 413–421 (2006)

    Article  Google Scholar 

  33. Wang, S., Chung, F.L., Wang, J., Wu, J.: A fast learning method for feedforward neural networks. Neurocomputing 149(A), 295–307 (2015)

    Article  Google Scholar 

  34. Obcemea, C.: Chaotic Dynamics of Tumor Growth and Regeneration. Unifying Themes in Complex Systems, pp. 349–354. Springer, Berlin (2006)

    Book  Google Scholar 

  35. Kurtser, P., Levi, O., Gontar, V.: Detection and Classification of ECG Chaotic Components Using ANN Trained by Specially Simulated Data. Communications in Computer and Information Science, vol. 311. Springer, Berlin (2012)

    Google Scholar 

  36. Wang, C., Cao, H.: Parameter space of the Rulkov chaotic neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2060–2070 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wu, L., Akgunduz, A.: User interface design for artistic expression based on biosignals: an EEG feature extraction method based on weak periodic signal detection. In: Proceedings of IEEE International Conference on Innovative Design and Manufacturing (ICIDM), pp. 5–10 (2014)

  38. Betancourt-Mar, J.A., Alarcón-Montelongo, I.S., Nieto-Villar, J.M.: The Rössler system as a model for chronotherapy. J. Phys. Conf. Ser. 23(1), 58–61 (IOP Publishing) (2005)

  39. Lainscsek, C., Weyhenmeyer, J., Hernandez, M.E., Poizner, H., Sejnowski, T.J.: Non-linear dynamical classification of short time series of the Rössler system in high noise regimes. Front. Neurol. 4, 1–12 (2013) (Article 182)

  40. Ivancevic, T.T., Bottema, M.J., Jain, L.C.: A mathematical model of chaotic attractor in tumor growth and decay. Cornell University Library (2008). arXiv:0810.4580

  41. Hald, B.G., Lavagesen, N., Nielsen, C., Mosekilde, E., Larssen, E.R., Engelbrecht, J.: Rössler Bands in Economic and Biological Systems. Computer-Based Management of Complex Systems. Springer, Berlin (1989)

    Google Scholar 

  42. Alhawarat, M., Nazih, W., Eldesouki, M.: Studying a chaotic spiking neural model. Int. J. Artif. Intell. Appl. (IJAIA) 4(5), 107–119 (2013) (Cornell University Library arXiv:1310.7115)

  43. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  44. Edmonds, A.N.: Time series prediction using supervised learning and tools from chaos theory. Ph.D. Dissertation, University of Luton (1996)

  45. Sprott, J.C.: Chaos and Time Series Analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  46. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3(I)), 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pashaie, R., Farhat, N.H.: Self-organization in a parametrically coupled logistic map network: a model for information processing in the visual cortex. IEEE Trans. Neural Netw. 20(4), 597–608 (2009)

    Article  Google Scholar 

  48. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezland. Wiley, New York (2008)

    Google Scholar 

  49. Behera, S.K., Meher, S.K., Park, H.-S.: Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol. Environ. Policy 17, 443–453 (2014)

    Article  Google Scholar 

  50. Hernandez-Davila, V.M., Soto-Bernal, T.G., Vega-Carrillo, H.R.: Determination of neutron fluence-to-dose conversion coefficients by means of artificial neural networks. Appl. Radiat. Isot. 83(C), 249–251 (2014)

    Article  Google Scholar 

  51. Sahoo, G.B., Ray, C.: Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 283(1–2), 147–157 (2006)

    Article  Google Scholar 

  52. Shokrian, M., Sadrzadeh, M., Mohammadi, T.: \({\rm C}_{3}{\rm H}_{8}\) separation from \({\rm CH}_{4}\) and \({\rm H}_{2}\) using a synthesized PDMS membrane: Experimental and neural network modeling. J. Membr. Sci. 346(1), 59–70 (2010)

    Article  Google Scholar 

  53. Niemeyer, G.: Making diagnostic use of electrical events in the retina. The Baltic Eye, Newletter for Ophthalmologists. http://www.thebalticeye.com/ZURICH.html

  54. Niemeyer, G.: Das Elektroretinogramm: Nützlich und nicht kompliziert. Ophta Schweiz. Fachz. Augenärztl. Med. 5, 7–13 (2004)

  55. Karwoski, C.: Origin of Electroretinographic Components. Principles and Practice of Clinical Electrophysiology of Vision (Part III). Mosby Year Book, St. Louis (1991)

    Google Scholar 

  56. Shah, M.R., Alexander, K.R., Rips, H., Qian, H.: Characteristics of period doubling in the rat cone flicker ERG. Exp. Eye Res. 90(2), 196–202 (2010)

    Article  Google Scholar 

  57. Nusse, H.E., Yorke, J.A.: Dynamics: Numerical Explorations. Applied Mathematical Sciences, vol. 101. Springer, Berlin (1998)

    Book  Google Scholar 

  58. Orrell, D., Smith, L.A.: Visualising bifurcations in high dimensional systems: the spectral bifurcation diagram. Intl. J. Bifurc. Chaos 13(10), 3015–3027 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Grant, A.: Applications of graph theory to the analysis of chaotic dynamical systems and complex networks. The Division of Science, Mathematics, and Computing of Bard College, Annandale-on-Hudson, New York (2012)

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Professor Markus Meister in the department of molecular and cellular biology at Harvard University for providing the ERG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falahian, R., Mehdizadeh Dastjerdi, M., Molaie, M. et al. Artificial neural network-based modeling of brain response to flicker light. Nonlinear Dyn 81, 1951–1967 (2015). https://doi.org/10.1007/s11071-015-2118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2118-x

Keywords

Navigation