Skip to main content
Log in

Novel wave structures in the two-dimensional cubic–quintic nonlinear Schrödinger equation with space-modulated potential and nonlinearities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the two-dimensional cubic–quintic nonlinear Schrödinger (CQNLS) equation with space-modulated potential and nonlinearities, which describes the nonlinear wave interactions in nonlinear optics and Bose–Einstein condensates. We use the modified conformal mapping, the Cauchy–Riemann equation, and its extension to present many types of new wave structures of this CQNLS model for different external potentials and nonlinearities, which exhibit bright-like and dark-like solitons, vortex solitons, and other types of wave solutions. Moreover, we also analyze the velocity fields and transverse power-flow or Poynting vectors related to the obtained wave solutions and find the direct relationships between the velocity fields and transverse power-flow or Poynting vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Carretero-González, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21, R139 (2008)

    Article  MATH  Google Scholar 

  3. Hasegawa, A., Matsumoto, M.: Optical solitons in fibers. Springer, Berlin (2003)

    Book  Google Scholar 

  4. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)

    Article  Google Scholar 

  5. Kivshar, Y.S., Agrawal, G.P.: Optical solitons: from fibers to photonic crystals. Academic Press, New York (2003)

    Google Scholar 

  6. Pethick, C.J., Smith, H.: Bose-Einstein condensation in dilute gases, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Pitaevskii, L., Stringari, S.: Bose–Einstein condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  8. Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation: self-focusing and wave collapse. Springer, New York (1999)

    MATH  Google Scholar 

  9. Belmonte-Beitia, J., Pérez-Garcia, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  10. Belmonte-Beitia, J., Pérez-Garcia, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  11. Ponomarenko, S., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Article  Google Scholar 

  12. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  13. Yan, Z.Y.: Nonautonomous rogons in the inhomogeneous nonlinear Schrodinger equation with variable coefficients. Phys. Lett. A 374, 672 (2010)

    Article  MATH  Google Scholar 

  14. Yan, Z.Y., Jiang, D.M.: Matter-wave solutions in Bose–Einstein condensates with harmonic and Gaussian potentials. Phys. Rev. E 85, 056608 (2012)

    Article  Google Scholar 

  15. Belić, M., et al.: Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett. 101, 123904 (2008)

    Article  Google Scholar 

  16. Driben, R., Malomed, B.A.: Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials. Eur. Phys. J. D-At. 50, 317 (2008)

    Article  Google Scholar 

  17. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclassical Opt. 7, R53 (2005)

    Article  Google Scholar 

  18. Pérez-Garcia, V.M., Torres, P.J., Konotop, V.V.: Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients. Phys. D 221, 31 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in non-stationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)

    Article  MathSciNet  Google Scholar 

  20. Yan, Z.Y., Konotop, V.V., Yulin, A.V., Liu, W.M.: Two-dimensional superfluid flows in inhomogeneous Bose–Einstein condensates. Phys. Rev. E 85, 016601 (2012)

    Article  Google Scholar 

  21. Yan, Z.Y.: Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials. Nonlinear Dyn. 79, 2515 (2015)

    Article  Google Scholar 

  22. Yan, Z.Y.: Parameters controlling matter waves in the one-dimensional generalized Gross–Pitaevskii equation with the varying potential and source. J. Math. Anal. Appl. 423, 1370 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yan, Z.Y., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. Phys. Rev. E 80, 036607 (2009)

    Article  Google Scholar 

  24. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79, 025602 (2009)

    Article  Google Scholar 

  25. Kagan, Yu., Muryshev, A.E., Shlyapnikov, G.V.: Collapse and Bose–Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933 (1998)

    Article  Google Scholar 

  26. Khaykovich, L., Malomed, B.A.: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons. Phys. Rev. A 74, 023607 (2006)

    Article  Google Scholar 

  27. Pushkarov, KhI, Pushkarov, D.I., Tomov, I.V.: Self-action of light beams in nonlinear media: soliton solutions. Opt. Quantum Electron. 11, 471 (1979)

    Article  Google Scholar 

  28. Yan, Z.Y.: Localized analytical solutions and parameters analysis in the nonlinear dispersive Gross–Pitaevskii mean-field GP (m, n) model with space-modulated nonlinearity and potential. Stud. Appl. Math. 132, 266 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Jovanoski, Z., Biswas, A.: Optical solitons in birefringent fibers with spatiotemporal dispersion. Optik 125, 4935 (2014)

    Article  Google Scholar 

  30. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433 (2014)

    Google Scholar 

  31. Khan, K.R., Mahmood, M.F., Biswas, A.: Coherent super continuum generation in PCF at visible and near infrared wavelengths. IEEE J. Sel. Top. Quantum Electron. 20, 7500309 (2014)

  32. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 441 (2014)

    Article  MathSciNet  Google Scholar 

  33. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for kerr law nonlinearity. Rom. J. Phys. 59, 582 (2014)

    Google Scholar 

  34. Savescu, M., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Zhou, Q., Biswas, A.: Optical solitons in DWDM system with four-wave mixing. Optoelectron. Adv. Mater. 9, 14 (2015)

    Google Scholar 

  35. Vega-guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion by ansatz approach. J. Optoelectron. Adv. Mater. 17, 165 (2015)

    Google Scholar 

  36. Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 17, 74 (2015)

    Google Scholar 

  37. Vega-Guzman, J., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. Proc. Rom. Acad. Ser. A. 16, 41 (2015)

    MathSciNet  Google Scholar 

  38. Zhou, Q., Zhu, Q., Liu, Y., Biswas, A., Bhrawy, A.H., Khan, K.R., Mahmood, M.F.: Solitons in optical metamaterials with parabolic law nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 1221 (2014)

    Google Scholar 

  39. Spiegel, M.R.: Theory and problems of complex variables. McGraw-Hill Publishing Co., New York (1974)

    Google Scholar 

  40. Adomian, G.: Solving frontier problem of physics: the decomposition method. Kluwer Academic Publishers, Boston (1994)

    Book  Google Scholar 

  41. Wazwaz, A.M.: A computational approach to soliton solutions of the Kadomtsev–Petviashvili equation. Appl. Math. Comput. 123, 205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yan, Z.Y.: Numerical doubly periodic solution of the KdV equation with the initial condition via the decomposition method. Appl. Math. Comput. 168, 1065 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referees for their valuable suggestions. This work was partially supported by the NSFC (No. 61178091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z. Novel wave structures in the two-dimensional cubic–quintic nonlinear Schrödinger equation with space-modulated potential and nonlinearities. Nonlinear Dyn 82, 119–129 (2015). https://doi.org/10.1007/s11071-015-2143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2143-9

Keywords

Navigation