Skip to main content
Log in

Pigeon-inspired optimization applied to constrained gliding trajectories

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the novel use of pigeon-inspired optimization (PIO) to generate the constrained gliding trajectory for hypersonic gliding vehicles. The velocity-dependent bank angle profile is developed in a quite simple formulation in order to reduce the searching space of the trajectory control command. The end-to-end trajectory and maximum-range trajectory are obtained by the enforced PIO algorithm which serves as an effective tool to deal with the typical path constraints and terminal conditions. Further, the forward and backward reversal logic is proposed to construct approximate footprints that can provide a fast decision in the mission deployment for nominal flights and abort situations. Numerical simulations demonstrate that the improved PIO algorithm is feasible and reliable to generate the constrained gliding trajectory for hypersonic gliding vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zong, Q., Wang, F., Tian, B., Rui, R.: Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn. 78(1), 289–315 (2014)

    Article  Google Scholar 

  2. Zhao, J., Zhou, R., Jin, X.: Progress in reentry trajectory planning for hypersonic vehicle. J. Syst. Eng. Electron. 25(4), 627–639 (2014)

    Article  Google Scholar 

  3. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2014)

    Google Scholar 

  4. Zhao, J., Zhou, R.: Unified approach to cooperative guidance laws against stationary and maneuvering targets. Nonlinear Dyn. doi:10.1007/s11071-015-2096-z

  5. Yan, X., Lyu, S., Tang, S.: Analysis of optimal initial glide conditions for hypersonic glide vehicles. Chin. J. Aeronaut. 27(2), 217–225 (2014)

    Article  Google Scholar 

  6. Zhao, J., Zhou, R.: Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints. Chin. J. Aeronaut. 26(6), 1544–1553 (2013)

    Article  Google Scholar 

  7. Xu, B., Wang, D., Sun, F., Shi, R.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lu, Y., Huang, G., Nan, Y.: A survey of numerical algorithms for trajectory optimization of flight vehicles. Sci. China Technol. Sci. 55(9), 2538–2560 (2012)

    Article  Google Scholar 

  9. Tian, B., Fan, W., Zong, Q.: Integrated guidance and control for reusable launch vehicle in reentry phase. Nonlinear Dyn. 80(1–2), 397–412 (2015)

    Article  Google Scholar 

  10. Zhao, J., Zhou, R., Zhang, C.: Predictor-corrector reentry guidance satisfying no-fly zone constraints. Acta Armamentarii 36(5), 823–830 (2015)

  11. Gao, G., Wang, J.: Observer-based fault-tolerant control for an air-breathing hypersonic vehicle model. Nonlinear Dyn. 76(1), 409–430 (2014)

    Article  Google Scholar 

  12. Zhao, J., Zhou, R.: Particle swarm optimization applied to hypersonic reentry trajectories. Chin. J. Aeronaut. 28(3), 822–831 (2015)

    Article  Google Scholar 

  13. Xie, Y., Liu, H., Tang, G., Zheng, W.: Highly constrained entry trajectory generation. Acta Astronaut. 88(1), 44–60 (2013)

    Article  Google Scholar 

  14. Zhao, J., Zhou, R., Zhang, C.: Predictor-corrector reentry guidance satisfying no-fly zone constraints. J. Beijing Univ. Aeronaut. Astronaut. 41(5), 864–870 (2015)

    Google Scholar 

  15. Mease, K.D., Chen, D.T., Teufel, P., et al.: Reduced-order entry trajectory planning for acceleration guidance. J. Guid. Control Dyn. 25(2), 257–266 (2002)

    Article  Google Scholar 

  16. Saraf, A., Chen, D.T., Leavitt, J.A., et al.: Design and evaluation of an acceleration guidance algorithm for entry. J. Spacecr. Rockets 41(6), 986–996 (2004)

    Article  Google Scholar 

  17. Leavitt, J.A., Mease, K.D.: Feasible trajectory generation for atmospheric entry guidance. J. Guid. Control Dyn. 30(2), 473–481 (2007)

    Article  Google Scholar 

  18. Guo, J., Fu, Y., Cui, N.: Three dimensional autonomous entry guidance method. Control Decis. 28(5), 688–695 (2003)

    Google Scholar 

  19. Shen, Z., Lu, P.: Onboard generation of three dimensional constrained entry trajectories. J. Guid. Control Dyn. 26(1), 111–121 (2003)

    Article  MathSciNet  Google Scholar 

  20. Lu, P.: Asymptotic analysis of quasi-equilibrium glide in lifting entry flight. J. Guid. Control Dyn. 29(3), 662–670 (2006)

    Article  Google Scholar 

  21. Ning, G., Zhang, S., Fang, Z.: Integrated entry guidance for reusable launch vehicle. Chin. J. Aeronaut. 20(1), 1–8 (2007)

    Article  Google Scholar 

  22. Xu, M., Chen, K., Liu, L., Tang, G.: Quasi-equilibrium glide adaptive guidance for hypersonic vehicles. Sci. China Technol. Sci. 55(3), 856–866 (2012)

  23. Zhao, J., Zhou, R., Jin, X.: Gauss pseudospectral method applied to multi-objective spacecraft trajectory optimization. J. Comput. Theor. Nanosci. 11(10), 2242–2246 (2014)

  24. Han, P., Shan, J., Meng, X.: Re-entry trajectory optimization using an hp-adaptive Radau pseudospectral method. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 227(10), 1623–1636 (2013)

    Article  Google Scholar 

  25. Guo, X., Zhu, M.: Direct trajectory optimization based on a mapped Chebyshev pseudospectral method. Chin. J. Aeronaut. 26(2), 401–412 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zhao, J., Zhou, R., Jin, X.: Reentry trajectory optimization based on a multistage pseudospectral method. ScientificWorldJournal 878193, 1–13 (2014). doi:10.1155/2014/878193

    Google Scholar 

  27. Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 26(2), 401–412 (2013)

    Google Scholar 

  28. Zhang, B., Duan, H.: Predator-prey pigeon-inspired optimization for UAV three-dimensional path planning. Adv. Swarm Intell. 8795, 96–105 (2014)

    Google Scholar 

  29. Benito, J., Mease, K.: Reachable and controllable sets for planetary entry and landing. J. Guid. Control Dyn. 33(3), 641–654 (2010)

    Article  Google Scholar 

  30. Bollino, K., Ross, I., Doman, D.: Six-degrees-of-freedom trajectory optimization for reusable launch vehicle footprint determination. Space Flight Mech. 130(2), 859–878 (2008)

    Google Scholar 

  31. Phillips, T.H.: A common aero vehicle (CAV) model, description, and employment guide. Schafer Corporation for Air Force Research Laboratory (AFRL) and Air Force Space Command (AFSPC) (2003)

Download references

Acknowledgments

The authors would like to thank the editors and reviewers for their critical review of this manuscript. This study was supported by National Natural Science Foundation of China (Nos: 61273349, 61203223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, R. Pigeon-inspired optimization applied to constrained gliding trajectories. Nonlinear Dyn 82, 1781–1795 (2015). https://doi.org/10.1007/s11071-015-2277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2277-9

Keywords

Navigation