Skip to main content
Log in

Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear response characteristics of a dual-rotor system with a breathing transverse crack in the hollow shaft of the high-pressure rotor (rotor 1). A finite element model of the system is set up, and the motion equations of the system are formulated, in which the unbalance excitations of the rotor 1 and rotor 2 (low-pressure rotor) and the time-varying stiffness of the cracked shaft are considered. By using the harmonic balance method, the motion equations are analytically solved to obtain the dynamic responses of the two rotors. Accordingly, the effects of the crack depth and location on the vibration amplitudes are discussed in detail. The results indicate that when a transverse crack appears, it may bring super-harmonic responses to the rotor system, and the resonance peaks at the second, third and even fourth subcritical whirling speeds of the two rotors can be observed. The deeper the crack is, the larger the resonances amplitudes are, especially when the crack is located in the middle of the shaft or around the disks. In addition, the super-harmonic responses of rotor 1 where the crack located, can also be observed in rotor 2, which means that the crack signals can be detected in the entire system. Moreover, the numerical computations are carried out by using the Newmark-\(\beta \) method, which shows great agreement with the previous analytical results. The results obtained in this paper will contribute to the modeling and the fault diagnosis of dual-rotor systems with hollow-shaft crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Crack angle of the outer circle cross section

\(\alpha _1 \) :

Crack angle of the inner circle cross section

\(A_\mathrm{ce}\) :

The area of the uncracked segment

\(\mathbf{A}_{s}\) :

Coefficient of Fourier series

\(\beta \) :

Speed ratio

\(\mathbf{B}_{s}\) :

Coefficient of Fourier series

c :

The new centroid of the cross section

\(\mathbf{C}_{1}, \mathbf{C}_{2}\) :

Damping matrixes

\(\mathbf{C}1_{s}\) :

Coefficient of Fourier series

\(\mathbf{D}_{s}\) :

Coefficient of Fourier series

e :

The distance between o and c

E :

Young’s modulus

\(\mathbf{F}_{i}\) :

Unbalance excitation vectors

\(\mathbf{F}_{g}\) :

Gravity vector

\(\mathbf{G}_{i}\) :

Gyroscopic matrixes

G :

Shear modulus

h :

Depth of the transverse crack

\(I_{1}, I_{2}\) :

The reduction in the moment of inertias of the cracked element for c-xy

\(I_x^o ,I_y^o \) :

The reduction in the moment of inertias of the cracked element for o-xy

\(J_{\mathrm{d}}^{d}\) :

Diametral moment of inertia of the disk

\(J_{\mathrm{p}}^{d} \) :

Polar moment of inertia of the disk

\(\alpha _1 ,\beta _1 ,\alpha _2 ,\beta _2 \) :

Damping proportional coefficients

\(k_{xx}, k_{yy}\) :

Bearing stiffness

\(\mathbf{K}_{i}\) :

Stiffness matrix

\(\mathbf{k}_c^k \) :

The reduced stiffness matrix by crack in element k

L :

Length of the rotor 1

\(m^{\mathrm{d}}\) :

Mass of disk

\(\mathbf{M}_{i}\) :

Mass matrixes

N :

Number of the element of shaft

o :

Centroid of the cross section without crack

o-xy :

The fixed coordinate system

q :

Displacement vector

\({\dot{\mathbf{q}}}\) :

Velocity vector

\({\ddot{\mathbf{q}}}\) :

Acceleration vector

r :

Inner radius of the rotor 1

\(\mathbf{Q}_{1}, \mathbf{Q}_{2}\) :

Vectors of the unbalance excitation

R :

Outer radius of the rotor 1

t :

Time

\(\mu \) :

Non-dimensional crack depth

\(\mu _{\mathrm{s}}\) :

Shear coefficient of section

\(\upsilon \) :

Poisson’s ratio

\({\varvec{\Omega }}_{1}, \varvec{\Omega }_{2}\) :

The rotation speeds of rotor 1, rotor 2

\(c_{xx}\),\(c_{yy}\) :

Bearing damping

\(c_{xy} =c_{yx}\) :

Coupling damping of the bearing

\(k_{xy}=k_{yx}\) :

Coupling stiffness of the bearing

References

  1. Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of the aero-engine system. Acta Aeronaut. et Astronaut. Sin. 32(8), 1371–1391 (2011)

    Google Scholar 

  2. Gasch R.: Dynamic behaviour of a simple rotor with a cross-sectional crack. Vib. Rotat. Mach. Proceedings of the International Conference, Institution of Mechanical Engineers [Paper C178/76], 123–128 (1976)

  3. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160(2), 313–332 (1993)

    Article  MATH  Google Scholar 

  4. Gasch, R.: Dynamic behavior of the Laval rotor with a transverse crack. Mech. Syst. Signal Process. 22, 790–804 (2008)

    Article  Google Scholar 

  5. Mayes, I.W., Davies, W.G.R.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. J. Vib. Acoust. 106(1), 139–145 (1984)

    Article  Google Scholar 

  6. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117(1), 81–93 (1987)

    Article  Google Scholar 

  7. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)

    Article  Google Scholar 

  8. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43(1), 13–17 (1990)

    Article  Google Scholar 

  9. Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with a breathing crack. J. Sound Vib. 155(2), 273–290 (1992)

    Article  MATH  Google Scholar 

  10. Chen, C., Dai, L.: Bifurcation and chaotic response of a cracked rotor system with viscoelastic supports. Nonlinear Dyn. 50(3), 483–509 (2007)

    Article  MATH  Google Scholar 

  11. Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285(4), 1015–1037 (2005)

    Article  Google Scholar 

  12. Sinou, J.J.: Effects of a crack on the stability of a non-linear rotor system. Int. J. Nonlinear Mech. 42(7), 959–972 (2007)

    Article  Google Scholar 

  13. Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. A Solids 26(1), 152–170 (2007)

    Article  MATH  Google Scholar 

  14. Sinou, J.J.: Detection of cracks in rotor based on the 2\(\times \) and 3\(\times \) super-harmonic frequency components and the crack–unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13(9), 2024–2040 (2008)

    Article  Google Scholar 

  15. AL-Shudeifat, M.A., Butcher, E.A., Stern, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach. Int. J. Eng. Sci. 48(10), 921–935 (2010)

    Article  Google Scholar 

  16. Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis. J. Sound Vib. 330(3), 526–544 (2011)

    Article  Google Scholar 

  17. AL-Shudeifat, M.A.: On the finite element modeling of the asymmetric cracked rotor. J. Sound Vib. 332(11), 2795–2807 (2013)

    Article  Google Scholar 

  18. Sekhar, A.S.: Crack identification in a rotor system: a model-based approach. J. Sound Vib. 270(4), 887–902 (2004)

    Article  Google Scholar 

  19. Darpe, A.K.: A novel way to detect transverse surface crack in a rotating shaft. J. Sound Vib. 305(1), 151–171 (2007)

    Article  Google Scholar 

  20. Sawicki, J.T., Friswell, M.I., Kulesza, Z., Wroblewski, A., Lekki, J.D.: Detecting cracked rotors using auxiliary harmonic excitation. J. Sound Vib. 330(7), 1365–1381 (2011)

    Article  Google Scholar 

  21. Haji, Z.N., Oyadiji, S.O.: The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors. J. Sound Vib. 333(23), 6237–6257 (2014)

    Article  Google Scholar 

  22. Zhang, B., Li, Y.: Six degrees of freedom coupled dynamic response of rotor with a transverse breathing crack. Nonlinear Dyn. 78(3), 1843–1861 (2014)

    Article  Google Scholar 

  23. Hou, L., Chen, Y.S., Li, Z.G.: Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom. Acta Phys. Sin. 63, 134501 (2014)

    Google Scholar 

  24. Yang, Y.F., Ren, X.M., Qin, W.Y., Wu, Y.F., Zhi, X.Z.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183–192 (2010)

    Article  MATH  Google Scholar 

  25. Zhou, T., Sun, Z., Xu, J., Han, W.: Experimental analysis of cracked rotor. J Dyn. Syst. Meas. Control 127(3), 313–320 (2005)

    Article  Google Scholar 

  26. Sinou, J.J.: Experimental study on the nonlinear vibrations and n\(\times \) amplitudes of a rotor with a transverse crack. J. Vib. Acoust. 131(4), 041008 (2009)

    Article  Google Scholar 

  27. Chiang, H.W.D., Hsu, C.N., Tu, S.H.: Rotor-bearing analysis for turbomachinery single-and dual-rotor systems. J. Propuls. Power. 20(6), 1096–1104 (2004)

    Article  Google Scholar 

  28. Aero-Engine Design Manual Compiling Committee.: Aero-engine Design Manual 19th Part: Rotor Dynamics and Whole-Engine Vibration. Aviation Industry Press, Beijing (2000)

  29. Chen, Y.S.: Nonlinear Dynamics. Higher Education Press, Beijing (2002)

    Google Scholar 

  30. Luo, G.H., Hu, X., Yang, X.G.: Nonlinear dynamic performance analysis of counter-rotating dual-rotor system. J. Vib. Eng. 22, 268–273 (2009)

    Google Scholar 

  31. Chen, S.T., Wu, Z.Q.: Rubbing vibration analysis for a counter-rotating dual-rotor system. J. Vib. Shock. 31, 142–147 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from the National Basic Research Program (973 Program) of China (Grant No. 2015CB057400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Appendix

Appendix

Finite element matrices:

$$\begin{aligned} \mathbf{K}_T^\mathrm{es}= & {} \frac{EI}{L^{3}}\left[ {{\begin{array}{cccccccc} {K_{B1} }&{} &{} &{} &{} &{} &{} &{} \\ 0&{} {K_{B1} }&{} &{} &{} &{} &{} &{} \\ 0&{} {-K_{B4} }&{} {K_{B2} }&{} &{} &{} \mathrm{symm}&{} &{} \\ {K_{B4} }&{} 0&{} 0&{} {K_{B2} }&{} &{} &{} &{} \\ {-K_{B1} }&{} 0&{} 0&{} {-K_{B4} }&{} {K_{B1} }&{} &{} &{} \\ 0&{} {-K_{B1} }&{} {K_{B4} }&{} 0&{} 0&{} {K_{B1} }&{} &{} \\ 0&{} {-K_{B4} }&{} {K_{B3} }&{} 0&{} 0&{} {K_{B4} }&{} {K_{B2} }&{} \\ {K_{B4} }&{} 0&{} 0&{} {K_{B3} }&{} {-K_{B4} }&{} 0&{} 0&{} {K_{B2} } \\ \end{array} }} \right] , \\ K_{B1}= & {} 12/(1+\varphi _s );K_{B2} =L^{2}(4+\varphi _s )/(1+\varphi _s );K_{B3} =L^{2}(2-\varphi _s )/(1+\varphi _s ); \\ K_{B4}= & {} 6L/(1+\varphi _s );\varphi _s =12\mathrm{EI}/(\mathrm{GAL}^{2}). \\ \mathbf{M}_T^\mathrm{es}= & {} \frac{\rho L}{(1+\varphi _s )^{2}}\left[ {{\begin{array}{cccccccc} {M_{T1} }&{} &{} &{} &{} &{} &{} &{} \\ 0&{} {M_{T1} }&{} &{} &{} &{} &{} &{} \\ 0&{} {-M_{T4} }&{} {M_{T2} }&{} &{} &{} \mathrm{symm}&{} &{} \\ {M_{T4} }&{} 0&{} 0&{} {M_{T2} }&{} &{} &{} &{} \\ {M_{T3} }&{} 0&{} 0&{} {M_{T5} }&{} {M_{T1} }&{} &{} &{} \\ 0&{} {M_{T3} }&{} {-M_{T5} }&{} 0&{} 0&{} {M_{T1} }&{} &{} \\ 0&{} {M_{T5} }&{} {M_{T6} }&{} 0&{} 0&{} {M_{T4} }&{} {M_{T2} }&{} \\ {-M_{T5} }&{} 0&{} 0&{} {M_{T6} }&{} {-M_{T4} }&{} 0&{} 0&{} {M_{T2} } \\ \end{array} }} \right] , \\ M_{T1}= & {} 13/35+7/10\varphi _s +1/3\varphi _s^2 ;M_{T2} =(1/105+1/60\varphi _s +1/120\varphi _s^2 )L^{2}; \\ M_{T3}= & {} 9/70+3/10\varphi _s +1/6\varphi _s^2 ;M_{T4} =(11/210+11/120\varphi _s +1/24\varphi _s^2 )L; \end{aligned}$$
$$\begin{aligned} M_{T5}= & {} (13/420+3/40\varphi _s +1/24\varphi _s^2 )L;M_{T6} =-(1/140+1/60\varphi _s +1/120\varphi _s^2 )L^{2}. \\ \mathbf{M}_R^\mathrm{es}= & {} \frac{\rho L}{(1+\varphi _s )^{2}}\left( \frac{r_\rho }{L} \right) ^{2}\left[ {{\begin{array}{cccccccc} {M_{R1} }&{} &{} &{} &{} &{} &{} &{} \\ 0&{} {M_{R1} }&{} &{} &{} &{} &{} &{} \\ 0&{} {-M_{R4} }&{} {M_{R2} }&{} &{} &{} \mathrm{symm}&{} &{} \\ {M_{R4} }&{} 0&{} 0&{} {M_{R2} }&{} &{} &{} &{} \\ {-M_{R1} }&{} 0&{} 0&{} {-M_{R4} }&{} {M_{R1} }&{} &{} &{} \\ 0&{} {-M_{R1} }&{} {M_{R4} }&{} 0&{} 0&{} {M_{R1} }&{} &{} \\ 0&{} {-M_{R4} }&{} {M_{R3} }&{} 0&{} 0&{} {M_{R4} }&{} {M_{R2} }&{} \\ {M_{R4} }&{} 0&{} 0&{} {M_{R3} }&{} {-M_{R4} }&{} 0&{} 0&{} {M_{R2} } \\ \end{array} }} \right] , \\ M_{R1}= & {} 6/5;M_{R2} =(2/15+1/6\varphi _s +1/3\varphi _s^2 )L^{2};r_\rho =\sqrt{I^{e}/A}; \\ M_{R3}= & {} (-1/30-1/6\varphi _s +1/6\varphi _s^2 )L^{2};M_{R4} =(1/10-1/2\varphi _s )L. \\ \mathbf{G}^\mathrm{es}= & {} \frac{\rho r_\rho ^2 }{15L(1+\varphi _s )^{2}}\left[ {{\begin{array}{cccccccc} 0&{} &{} &{} &{} &{} &{} &{} \\ {G_1 }&{} 0&{} &{} &{} &{} &{} &{} \\ {-G_2 }&{} 0&{} 0&{} &{} &{} \mathrm{antisymm}&{} &{} \\ 0&{} {-G_2 }&{} {G_4 }&{} 0&{} &{} &{} &{} \\ 0&{} {G_1 }&{} {-G_2 }&{} 0&{} 0&{} &{} &{} \\ {-G_1 }&{} 0&{} 0&{} {-G_2 }&{} {G_1 }&{} 0&{} &{} \\ {-G_2 }&{} 0&{} 0&{} {G_3 }&{} {G_2 }&{} 0&{} 0&{} \\ 0&{} {-G_2 }&{} {-G_3 }&{} 0&{} 0&{} {G_2 }&{} {G_4 }&{} 0 \\ \end{array} }} \right] , \\ G_1= & {} 36;G_2 =3L-15L\varphi _s ;G_3 =L^{2}+5L^{2}\varphi _s -15L^{2}\varphi _s^2 );G_4 =4L^{2}+5L^{2}\varphi _s +10L^{2}\varphi _s^2 ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Hou, L., Chen, Y. et al. Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft. Nonlinear Dyn 83, 169–185 (2016). https://doi.org/10.1007/s11071-015-2317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2317-5

Keywords

Navigation