Skip to main content
Log in

Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel redundantly actuated parallel manipulator with multiple potential actuation modes is proposed in this paper to conquer the drawbacks of the traditional planar 5R parallel manipulator. Firstly, some feasible topology configurations are presented and then an optimum scheme was achieved through some selection criteria. Kinematic analysis indicates that the redundant actuation modes have remarkable advantage over the non-redundant actuation modes because the redundant actuation ones can completely conquer the type II singularities within the theoretical reachable workspace. To investigate the dynamics, the Lagrangian formulation is employed to establish the uniformly dynamic model of the proposed parallel manipulator with multiple actuation modes. Based upon the dynamic model, two global dynamic performance indices are proposed for minimization by taking into accounts both inertia and centrifugal/Coriolis effects. Finally, the dynamic dimensional synthesis is performed subject to geometric constraints and some kinematic performance constraints. By using this approach, the designer can obtain a set of optimum dimensional parameters satisfying both the kinematic and dynamic performance. This approach can be extended to the optimum design for other high-speed parallel manipulators, especially for the ones with multiple actuation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Stefan, S., Liu, X.J., Wang, J.S.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)

    MATH  Google Scholar 

  3. Wu, Jun, Wang, J.S., Li, T.M., Wang, L.P.: Performance analysis and application of a redundantly actuated parallel manipulator for milling. J. Intell. Robot. Syst. 50(2), 163–180 (2007)

    Article  Google Scholar 

  4. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE. Trans. Robot. Autom. 6(3), 281–290 (1990)

    Article  Google Scholar 

  5. Collins, C.L., McCarthy, J.M.: The quartic singularity surfaces of planar platforms in the clifford algebra of projective plane. Mech. Mach. Theory 33(7), 931–944 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Park, F.C., Kim, J.W.: Singularity analysis of closed kinematic chains. ASME J. Mech. Des. 121(3), 32–38 (1999)

    Article  Google Scholar 

  7. Firmani, F., Podhorodeski, R.P.: Singularity analysis of planar parallel manipulators based on forward kinematic solutions. Mech. Mach. Theory 44(7), 1386–1399 (2009)

    Article  MATH  Google Scholar 

  8. Campos, L., Bourbonnais, F., Bonev, I.A., Bigras, P.: Development of a five-bar parallel robot with large workspace. In: Proceedings of the ASME 2010, International Design Engineering Technical Conferences, Montreal, Quebec, Canada (2010)

  9. Liu, G.F., Wu, Y.L., Li, Z.X.: Analysis and control of redundant parallel manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 3748–3754 (2001)

  10. Arsenault, M., Bourdeau, R.: The synthesis of three-degree-of-freedom planar parallel mechanisms with revolute joints (3-RRR) for an optimal singularity-free workspace. J. Robot. Syst. 21(5), 259–274 (2004)

    Article  MATH  Google Scholar 

  11. Macho, E., Altuzarra, O., Pinto, C., Hernandez, A.: Workspace associated to assembly modes of the 5R planar parallel manipulator. Robotica 26(3), 395–403 (2008)

    Article  Google Scholar 

  12. Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Workspace generation and planning singularity-free path for parallel manipulators. Mech. Mach. Theory 40(7), 776–805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, H., Yiu, Y.K., Li, Z.X.: Dynamics and control of redundantly actuated parallel manipulators. IEEE-ASME Trans. Mechatron. 8(4), 483–491 (2003)

    Article  Google Scholar 

  14. Müller, A.: Motion equations in redundant coordinates with application to inverse dynamics of constrained mechanical systems. Nonlinear Dyn. 67(4), 2527–2541 (2012)

    Article  MathSciNet  Google Scholar 

  15. Müller, A., Hufnagel, T.: Model-based control of redundantly actuated parallel manipulators in redundant coordinates. Robot. Auton. Syst. 60(4), 563–571 (2012)

    Article  Google Scholar 

  16. Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. 59(1–2), 61–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L.P., Wu, Jun, Wang, J.S.: Dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Comput. Integr. Manuf. 26(1), 67–73 (2010)

    Article  Google Scholar 

  18. Cheng, C., Xu, Wl, Shang, J.Z.: Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn. 79(2), 1235–1255 (2015)

    Article  Google Scholar 

  19. Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Determination of the kinematically redundant active prismatic joint variable ranges of a planar parallel mechanism for singularity-free trajectories. Mech. Mach. Theory 44(5), 1032–1044 (2009)

    Article  MATH  Google Scholar 

  20. Ebrahimi, I., Carretero, J.A., Boudreau, R.: Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica 26(3), 405–413 (2008)

    Article  Google Scholar 

  21. Kim, H.S.: Kinematically redundant parallel haptic device with large workspace. Int. J. Adv. Robot. Syst. 9(260), 1–9 (2012)

    Google Scholar 

  22. Li, R.Q., Dai, J.S.: Workspace atlas and stroke analysis of seven-bar mechanisms with the translation-output. Mech. Mach. Theory 47(1), 117–134 (2012)

    Article  Google Scholar 

  23. Alici, G.: An inverse position analysis of five-bar planar parallel manipulators. Robotica 20(2), 195–201 (2002)

    Article  Google Scholar 

  24. Gao, F., Zhang, X.Q., Zhao, Y.S., Wang, H.R.: A physical model of the solution space and the atlas of the reachable workspace for 2-DOF parallel planar manipulators. Mech. Mach. Theory 31(2), 173–184 (1996)

    Article  Google Scholar 

  25. Liu, X.J., Wang, J.S., Pritschow, G.: Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 41(2), 145–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, T., Liu, S.T., Mei, J.P., Chetwynd, D.G.: Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints. Mech. Mach. Theory 70(12), 246–253 (2013)

    Article  Google Scholar 

  27. Cheng, L., Lin, Y., Hou, Z.G., Tan, M., Huang, J., Zhang, W.J.: Adaptive tracking control of hybrid machines: a closed-chain five-bar mechanism case. IEEE-ASME. Trans. Mech. 16(6), 1155–1163 (2011)

    Article  Google Scholar 

  28. Zhang, L.J., Li, Y.Q., Huang, Z.: Analysis of the workspace and singularity of planar 2-DOF parallel manipulator with actuation redundancy. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, pp. 171–176 (2006)

  29. Gosselin, C.M., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. ASME J. Mech. Des. 113(3), 220–226 (1991)

    Article  Google Scholar 

  30. Huang, T., Li, M., Li, Z.X., Chetwynd, D.G., Whitehouse, D.J.: Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index. IEEE Trans. Robot. Autom. 20(3), 538–543 (2004)

    Article  Google Scholar 

  31. Gao, Z., Zhang, D.: Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62(1), 423–433 (2015)

    Article  Google Scholar 

  32. Hu, J.P., Yan, X.Y., Ma, J., Qi, C.H., Francs, K., Mao, H.P.: Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot. Comput. Electron. Agric. 107, 64–72 (2014)

    Article  Google Scholar 

  33. Song, Y.M., Lian, B.B., Sun, T., Dong, G., Qi, Yang, Gao, H.: A novel five-degree-of-freedom parallel manipulator and its kinematic optimization. ASME J. Mech. Robot. 6(4), 041008 (2014)

    Article  Google Scholar 

  34. Sun, T., Song, Y.M., Dong, G., Lian, B.B., Liu, J.P.: Optimal design of a parallel mechanism with three rotational degrees of freedom. Robot. Comput. Integr. Manuf. 28(4), 500–508 (2012)

    Article  Google Scholar 

  35. Lee, J.H., Nam, Y.J., Park, Mk: Kinematics and optimization of a 2-DOF parallel manipulator with a passive constraining leg and linear actuators. KSME. J. Mech. Sci. Technol. 24(1), 19–23 (2010)

    Article  Google Scholar 

  36. Liu, X.J., Wang, J.S.: A new methodology for optimal kinematic design of parallel mechanisms. Mech. Mach. Theory 42(9), 1210–1224 (2007)

    Article  MATH  Google Scholar 

  37. Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)

    Article  Google Scholar 

  38. Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. J. Dyn. Syst. Meas. Control 105(3), 131–135 (1983)

    Article  MATH  Google Scholar 

  39. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  40. Graettinger, T.J., Krogh, B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE Trans. Robot. Autom. 4(1), 60–69 (1988)

    Article  Google Scholar 

  41. Ma, O., Angeles, J.: The concept of dynamic isotropy and its applications to inverse kinematic and trajectory planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 481–486 (1990)

  42. Li, M., Huang, T., Mei, J.P., Zhao, X.M., Chetwynd, D.G., Hu, S.J.: Dynamic formulation and performance comparison of the 3-DOF modules of two reconfigurable PKM-the Tricept and the TriVariant. J. Mech. Des. 127(6), 1129–1136 (2005)

    Article  Google Scholar 

  43. Wu, J., Wang, L.P., You, Z.: A new method for optimum design of parallel manipulator based on kinematics and dynamics. Nonlinear Dyn. 61(4), 717–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, L.M., Mei, J.P., Zhao, X.M., Huang, T.: Dimensional synthesis of the delta robot uing transmission angle constraints. Robotica 30(3), 343–349 (2012)

    Article  Google Scholar 

  45. Gallardo-Alvarado, J., Alici, G., Pérez-González, L.: A new family of constrained redundant parallel manipulators. Multibody Syst. Dyn. 23(1), 57–75 (2010)

    Article  MATH  Google Scholar 

  46. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Soltanpour, M.R., Otadolajam, P., Khooban, M.H.: Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci. Meas. Technol. 9(3), 322–334 (2014)

    Article  Google Scholar 

  48. Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 1–20 (2015)

  49. Li, Y.M., Staicui, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51475321 and 51205278, Ph.D. Programs Foundation of Ministry of Education of China (Grant Nos. 2012003211003, 2012003212003) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 13JCQNJC04600 and 15JCZDJC38900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun.

Appendix

Appendix

The expressions of the equivalent mass and moment of inertia about centroid of links as well as the centroid positions of links, which are the functions of link lengths, are shown in Table 8.

Table 8 The equivalent mass and moment of inertia about centroid of links, and the centroid positions of links

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Song, Y., Sun, T. et al. Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance. Nonlinear Dyn 83, 631–658 (2016). https://doi.org/10.1007/s11071-015-2353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2353-1

Keywords

Navigation