Skip to main content
Log in

Discontinuity-induced bifurcations of a dual-point contact ball

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, dynamics of a ball is investigated, which is in dual-point contact with a cylindrical vessel. This model is based on a concept of a type of flowmeter. Rolling, slipping and separation of surfaces can all occur at both contact points, which results in a nonsmooth dynamical system. Stationary solutions of the system and their stability are determined in the different kinematic cases. By introducing the concept of stability with respect to slipping, existence of the stationary solutions can be checked even in the case when the contact forces are undetermined. Discontinuity-induced bifurcations of the system are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Antali, M., Stepan, G.: Nonlinear kinematic oscillations of railway wheelsets of general surface geometry. Proc. Appl. Math. Mech. 14, 303–304 (2014)

    Article  Google Scholar 

  2. Antali, M., Stepan, G., Hogan, J.: Kinematic oscillations of railway wheelsets. Multibody Syst. Dyn. 34(3), 259–274 (2015)

    Article  MathSciNet  Google Scholar 

  3. Antoine, J.F., Abba, G., Molinari, A.: A new proposal for explicit angle calculation in angular contact ball bearing. J. Mech. Des. 128, 468–478 (2005)

    Article  Google Scholar 

  4. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. di Bernardo, M., Hogan, S.J.: Discontinuity-induced bifurcations of piecewise smooth dynamical systems. Philos. Trans. R. Soc. A. 368, 4915–4935 (2010)

    Article  MATH  Google Scholar 

  6. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  7. Campau, D.N.: Fluid Flow Indicator. US Patent, US 4 819 577 (1989)

  8. Dieci, L., Difonzo, F.: The moments sliding vector field on the intersection of two manifolds. J. Dyn. Differ. Equ. (2015). doi:10.1007/s10884-015-9439-9

  9. Eldridge, G., Eldridge, R.: Cyclonic Flow Meters. US Patent, US 5 905 200 (1999)

  10. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  11. Gilbert, K.W.: Volumetric Fluid Flow Meter. UK Patent, GB 1 246 779 (1970)

  12. Glocker, C.: Set-Valued Force Laws. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  13. Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  14. Hamrock, B.J.: Ball motion and sliding friction in an arched outer race ball bearing. J. Tribol. 97(2), 202–2010 (1975)

    Google Scholar 

  15. Houlberg, D.M.: Fluid Flow Meter. US Patent, US 4 089 220 (1978)

  16. Jeffrey, M.R.: Dynamics at a switching intersection: hierarchy, isonomy, and multiple sliding. SIAM J. Appl. Dyn. Syst. 13(3), 1082–1105 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kearsley, W.K.: Flowmeter. US Patent, US 2 518 149 (1950)

  18. Kurose, R., Komuri, S.: Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183–206 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(8), 2157–2188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leine, R.I., van Campen, D.H., van de Vrande, B.H.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23(2), 105–164 (2000)

    Article  MATH  Google Scholar 

  21. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations in Non-Smooth Mechanical Systems. Springer, Berlin (2004)

    Book  Google Scholar 

  22. Lemaitre, J. (ed.): Handbook of Materials Behavior Models. Academic Press, New York (2001)

    Google Scholar 

  23. Le Saux, C., Leine, R.I., Glocker, C.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15, 27–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Noel, D., Rithou, M., Furet, B., Noch, S.L.: Complete analytical expression of the stiffness matrix of angular contact ball bearings. J. Tribol. (2013). doi:10.1115/1.4024109

  25. de Pater, A.D.: The equations of motion of a dicone moving on a pair of circular cylinders. Int. J. Non-linear Mech. 20, 439–449 (1985)

    Article  Google Scholar 

  26. Peters, M.L.J.P.: Orbital Ball Flow Meter for Liquids and Gases. World Intellectual Property Organization, WO 01/25829 A1 (2001)

  27. Peters, M.L.J.P.: Orbital Ball Flowmeter for Gas and Fluis. US Patent, US 8 505 378 B2 (2013)

  28. Pritchard, P.J.: Introduction to Fluid Mechanics, 8th edn. Wiley, Amsterdam (2011)

    Google Scholar 

  29. Rubinov, S.I., Keller, J.B.: The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11(3), 447–459 (1961)

    Article  MathSciNet  Google Scholar 

  30. Sallai, G.: Dispositif de Mesure pour Ecoulements Fluidiques. French Patent, FR 2 368 698 (1978)

  31. Shaw, S.: On the dynamic response of a system with dry friction. J. Sound Vib. 108(2), 305–325 (1986)

    Article  MATH  Google Scholar 

  32. Wickens, A.H.: The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. Int. J. Solids Struct. 1, 319–341 (1965)

    Article  Google Scholar 

  33. Yukinori, O., Shui, Y.: Flow Rate Detecting Device. European Patent Office, EPO 0 172 451 (1986)

  34. Zhao, J.S., et al.: Effects of gyroscopic moment on the damage of a tapered roller bearing. Mech. Mach. Theory 69, 185–199 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement No. 340889. We thank Csaba Hos of the University of Technology and Economics for the useful comments. We thank the reviewers for the useful critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mate Antali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antali, M., Stepan, G. Discontinuity-induced bifurcations of a dual-point contact ball. Nonlinear Dyn 83, 685–702 (2016). https://doi.org/10.1007/s11071-015-2356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2356-y

Keywords

Navigation