Skip to main content
Log in

Nonlinear analysis of electrostatically actuated diaphragm-type micropumps

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Diaphragm micropumps are the most common type among indirectly driven micropumps. The elastic diaphragm is deflected using a bias voltage and then driven to vibrate around its deflected position by a harmonic AC load to produce a flow rate. This paper investigates the nonlinear resonant behavior of a circular elastic diaphragm interacting with incompressible and inviscid liquids inside a cylindrical chamber containing a central discharge opening. The governing equations of the system are derived by taking into account the nonlinear electrostatic force and fluid pressure exerted upon the diaphragm which is formulated using the linear form of Bernoulli’s equation. In the modeling stage, the kinematic and compatibility conditions are incorporated into the elastic vibration of the diaphragm. The method of multiple scales is used to obtain an approximate analytical solution to the nonlinear resonant curves of the transverse oscillation amplitudes. It is shown that, as the DC voltage increases, the system exhibits softening behavior. The results also show that decreasing the discharge diameter further bends the frequency response cure to left side, which is an indication of increase in the system nonlinearity. The effects of micropump chamber height on the frequency curves were also studied and showed that softening behavior increases with decreasing chamber height. In addition, it was found that the electrical and inertial properties of the operating fluid can change the resonant curves significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yamahata, C., Vandevyver, C., Lacharme, F., Izewska, P., Vogel, H., Freitag, R., Gijs, M.A.: Pumping of mammalian cells with a nozzle–diffuser micropump. Lab Chip 5, 1083–1088 (2005)

    Article  Google Scholar 

  2. Wang, S., Huang, X., Yang, C.: Valveless micropump with acoustically featured pumping chamber. Microfluid. Nanofluid. 8, 549–555 (2010)

    Article  Google Scholar 

  3. Ma, H., Su, H., Wu, J.: Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber. Sens. Actuators A Phys. 171, 297–305 (2011)

    Article  Google Scholar 

  4. Nguyen, N.-T., Huang, X., Chuan, T.K.: MEMS-micropumps: a review. J. Fluids Eng. 124, 384–392 (2002)

    Article  Google Scholar 

  5. Laser, D., Santiago, J.: A review of micropumps. J. Micromech. Microeng. 14, R35 (2004)

    Article  Google Scholar 

  6. Woias, P.: Micropumps—past, progress and future prospects. Sens. Actuators B Chem. 105, 28–38 (2005)

    Article  Google Scholar 

  7. Tsai, N.-C., Sue, C.-Y.: Review of MEMS-based drug delivery and dosing systems. Sens. Actuators A Phys. 134, 555–564 (2007)

    Article  Google Scholar 

  8. Iverson, B.D., Garimella, S.V.: Recent advances in microscale pumping technologies: a review and evaluation. Microfluid. Nanofluid. 5, 145–174 (2008)

    Article  Google Scholar 

  9. Nisar, A., Afzulpurkar, N., Mahaisavariya, B., Tuantranont, A.: MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators B Chem. 130, 917–942 (2008)

    Article  Google Scholar 

  10. Amirouche, F., Zhou, Y., Johnson, T.: Current micropump technologies and their biomedical applications. Microsyst. Technol. 15, 647–666 (2009)

    Article  Google Scholar 

  11. Faris, W., Asrar, W., Omerbegovic, A.: Micropump modeling: current status and challenges. Aust. J. Basic Appl. Sci. 6(1), 134–142 (2012)

    Google Scholar 

  12. Teymoori, M.M., Abbaspour-Sani, E.: Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens. Actuators A Phys. 117, 222–229 (2005)

    Article  Google Scholar 

  13. Feng, G.-H., Kim, E.S.: Micropump based on PZT unimorph and one-way parylene valves. J. Micromech. Microeng. 14, 429 (2004)

    Article  Google Scholar 

  14. Dario, P., Croce, N., Carrozza, M., Varallo, G.: A fluid handling system for a chemical microanalyzer. J. Micromech. Microeng. 6, 95 (1996)

    Article  Google Scholar 

  15. Schomburg, W., Vollmer, J., Bustgens, B., Fahrenberg, J., Hein, H., Menz, W.: Microfluidic components in LIGA technique. J. Micromech. Microeng. 4, 186 (1994)

    Article  Google Scholar 

  16. Yang, Y., Zhou, Z., Ye, X., Jiang, X.: Bimetallic thermally actuated micropump. In: Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA, USA, 11/17-22/96, pp. 351–354

  17. Makino, E., Mitsuya, T., Shibata, T.: Fabrication of TiNi shape memory micropump. Sens. Actuators A Phys. 88, 256–262 (2001)

    Article  Google Scholar 

  18. Sim, W.Y., Yoon, H.J., Jeong, O.C., Yang, S.S.: A phase-change type micropump with aluminum flap valves. J. Micromech. Microeng. 13, 286 (2003)

    Article  Google Scholar 

  19. Younis, M., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  20. Borwick III, R.L., Stupar, P.A., DeNatale, J.F., Anderson, R., Erlandson, R.: Variable MEMS capacitors implemented into RF filter systems. Microw. Theory Tech. IEEE Trans. 51, 315–319 (2003)

    Article  Google Scholar 

  21. Rochus, V., Rixen, D.J., Golinval, J.-C.: Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in. Nonlinear Anal. Theory Methods Appl. 63, e1619–e1633 (2005)

    Article  MATH  Google Scholar 

  22. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Non Linear Mech. 42, 626–642 (2007)

    Article  Google Scholar 

  23. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  24. Xie, W., Lee, H., Lim, S.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003)

    Article  MATH  Google Scholar 

  25. Zand, M.M., Ahmadian, M., Rashidian, B.: Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages. J. Sound Vib. 325, 382–396 (2009)

    Article  Google Scholar 

  26. Faris, W.F., Abdel Rahman, E.M., Nayfeh, A.F.: Mechanical behavior of an electrostatically actuated micropump, AIAA, 1303, New York (2002)

  27. Shabani, R., Hatami, H., Golzar, F.G., Tariverdilo, S., Rezazadeh, G.: Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain. Acta Mech. 224, 841–850 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Paidoussis, M.P.: Fluid–Structure Interactions: Slender Structures and Axial Flow. Academic Press, London (1998)

    Google Scholar 

  29. Bao, M., Yang, H.: Squeeze film air damping in MEMS. Sens. Actuators A Phys. 136, 3–27 (2007)

    Article  Google Scholar 

  30. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  31. Caruntu, D.I., Martinez, I., Taylor, K.N.: Voltage–amplitude response of alternating current near half natural frequency electrostatically actuated MEMS resonators. Mech. Res. Commun. 52, 25–31 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhlou, M., Shabani, R. & Rezazadeh, G. Nonlinear analysis of electrostatically actuated diaphragm-type micropumps. Nonlinear Dyn 83, 951–961 (2016). https://doi.org/10.1007/s11071-015-2379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2379-4

Keywords

Navigation