Skip to main content

Advertisement

Log in

Lattice hydrodynamic model for traffic flow on curved road

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering topography conditions, economic factors and driving safety, in real traffic, a road may be built as curved road. Traffic flow on curved road is different from the one on straight road. And it is worth to investigate the influencing mechanism of traffic flow on curved road. In order to investigate traffic flow on curved road analytically, in this paper, an extended one-dimensional lattice hydrodynamic model for traffic flow on curved road is proposed. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of traffic flow varies with the radian, friction coefficient and curvature radius of curved road. The Burgers, Korteweg–de Vries and modified Korteweg–de Vries equations are derived to describe the nonlinear density waves in the stable, metastable and unstable regions, respectively. The simulations are given to verify the analytical results. The results, which obtained from the theoretical analysis and numerical simulations, show that traffic flow may be affected by the angle going into curved road, the increment of angle, friction coefficient and curvature radius of curved road. And the maximal theoretical flux and velocity of traffic flow are influenced by the above factors as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  2. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  3. Schadschneider, A.: Traffic flow: a statistical physics point of view. Phys. A 313, 1–40 (2002)

    Article  MathSciNet  Google Scholar 

  4. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–368 (2000)

    Article  MathSciNet  Google Scholar 

  5. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems—From Molecules to Vehicles. Elsevier, Amsterdam (2010)

    Google Scholar 

  6. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64(1), 017101 (2001)

    Article  Google Scholar 

  7. Xue, Y., Dong, L.Y., Yuan, Y.W., Dai, S.Q.: The effect of the relative velocity on traffic flow. Commun. Theor. Phys. 38(2), 230–234 (2002)

    Article  Google Scholar 

  8. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F., Tuo, M.X.: Optimal velocity difference model for a car-following theory. Phys. Lett. A 375(45), 3973–3977 (2011)

    Article  MATH  Google Scholar 

  9. Yu, L., Li, T., Shi, Z.K.: Density waves in a traffic flow with reaction-time delay. Phys. A 389, 2607–2616 (2010)

    Article  MathSciNet  Google Scholar 

  10. Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink–antikink solitons in car-following models. Phys. A 357, 466–476 (2005)

    Article  MathSciNet  Google Scholar 

  11. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  12. Zhou, J., Shi, Z.K., Cao, J.L.: Nonlinear analysis of the optimal velocity difference model with reaction-time delay. Phys. A 396, 77–87 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zhou, J., Shi, Z.K., Cao, J.L.: An extended traffic flow model on a gradient highway with the consideration of the relative velocity. Nonlinear Dyn. 78, 1765–1779 (2014)

    Article  Google Scholar 

  14. Lee, H.K., Lee, H.W., Kim, D.: Steady-state solutions of hydrodynamic traffic models. Phys. Rev. E 69(1), 016118 (2004)

    Article  Google Scholar 

  15. Kerner, B.S., Klenov, S.L., Hiller, A.: Empirical test of a microscopic three-phase traffic theory. Nonlinear Dyn. 49(4), 525–553 (2007)

    Article  MATH  Google Scholar 

  16. Nagatani, T., Nakanishi, K.: Delay effect on phase transitions in traffic dynamics. Phys. Rev. E 57(6), 6415–6421 (1998)

    Article  Google Scholar 

  17. Kerner, B.S., Konhauser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335–2338 (1993)

    Article  Google Scholar 

  18. Kurtze, D.A., Hong, D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1), 218–221 (1995)

    Article  MathSciNet  Google Scholar 

  19. Zhu, W.X., Zhang, L.D.: Friction coefficient and radius of curvature effects upon traffic flow on a curved road. Phys. A 391, 4597–4605 (2012)

    Article  Google Scholar 

  20. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 271, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  21. Nagatani, T.: Jamming transition in traffic flow on triangular lattice. Phys. A 271, 200–221 (1999)

    Article  Google Scholar 

  22. Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  23. Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Phys. A 272, 592–611 (1999)

    Article  Google Scholar 

  24. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  MATH  Google Scholar 

  25. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2012)

    Article  MATH  Google Scholar 

  26. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375, 2153–2157 (2011)

    Article  MATH  Google Scholar 

  27. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Phys. A 391, 656–663 (2012)

    Article  Google Scholar 

  28. Peng, G.H., He, H.D., Lu, W.Z.: A new lattice model with the consideration of the traffic interruption probability for two-lane traffic flow. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2001-9

    MathSciNet  Google Scholar 

  29. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375, 2823–2827 (2011)

    Article  MATH  Google Scholar 

  30. Zhang, M., Sun, D.H., Tian, C.: An extended two-lane traffic flow lattice model with driver’s delay time. Nonlinear Dyn. 77, 839–847 (2014)

    Article  MathSciNet  Google Scholar 

  31. Gupta, A.K., Redhu, P.: Analyses of drivers anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system. Phys. A 392, 5622–5632 (2013)

    Article  Google Scholar 

  32. Gupta, A.K., Redhu, P.: Analyses of the drivers anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76, 1001–1011 (2014)

  33. Gupta, A.K., Sharma, S., Redhu, P.: Effect of multi-phase optimal velocity function on jamming transition in a lattice hydrodynamic model with passing. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-1929-0

    Google Scholar 

  34. Zhang, G., Sun, D.H., Liu, W.N., Zhao, M., Chen, S.L.: Analysis of two-lane lattice hydrodynamic model with consideration of drivers’ characteristics. Phys. A 422, 16–24 (2015)

    Article  Google Scholar 

  35. Zhang, G., Sun, D.H., Liu, W.N.: Analysis of a new two-lane lattice hydrodynamic model with consideration of the global average flux. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2095-0

    MathSciNet  Google Scholar 

  36. Wang, T., Gao, Z.Y., Zhang, W.Y., Zhang, J., Li, S.B.: Phase transitions in the two-lane density difference lattice hydrodynamic model of traffic flow. Nonlinear Dyn. 77, 635–642 (2014)

    Article  MATH  Google Scholar 

  37. Wang, T., Gao, Z.Y., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197–2205 (2013)

    Article  MathSciNet  Google Scholar 

  38. Ge, H.X., Cheng, R.J.: The “backward looking” effect in the lattice hydrodynamic model. Phys. A 387, 6952–6958 (2008)

    Article  Google Scholar 

  39. Zhu, W.X., Zhang, L.D.: A novel lattice traffic flow model and its solitary density waves. Int. J. Mod. Phys. C 23(3), 1250025 (2012)

    Article  Google Scholar 

  40. Cao, J.L., Shi, Z.K.: A novel lattice traffic flow model on a curved road. Int. J. Mod. Phys. C (2015). doi:10.1142/S0129183115501211

    Google Scholar 

  41. Nagatani, T.: Thermodynamic theory for the jamming transition in traffic flow. Phys. Rev. E 58(4), 4271–4276 (1998)

    Article  Google Scholar 

  42. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their useful comments. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61134004), Zhejiang Province National Science Foundation (Grant No. LY12A010 09) and Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y201328023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Shi, ZK. Lattice hydrodynamic model for traffic flow on curved road. Nonlinear Dyn 83, 1217–1236 (2016). https://doi.org/10.1007/s11071-015-2398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2398-1

Keywords

Navigation