Skip to main content
Log in

Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An improved rotor-blade dynamic model is developed based on our previous works (Ma et al. in J Sound Vib, 337:301–320, 2015; J Sound Vib 357:168–194, 2015). In the proposed model, the shaft is discretized using a finite element method and the effects of the swing of the rigid disk and stagger angles of the blades are considered. Furthermore, the mode shapes of rotor-blade systems can be obtained based on the proposed model. The proposed model is more accurate than our previous model, and it is also verified by comparing the natural frequencies obtained from the proposed model with those from the finite element model and published literature. By simplifying the casing as a two degrees of freedom model, the single- and four-blade rubbings are studied using numerical simulation and experiment. Results show that for both the single- and four-blade rubbings, amplitude amplification phenomena can be observed when the multiple frequencies of the rotational frequency \((f_\mathrm{r})\) coincide with the conical and torsional natural frequencies of the rotor-blade system, natural frequencies of the casing and the bending natural frequencies of the blades. In addition, for the four-blade rubbing, the blade passing frequency (BPF, \(4f_\mathrm{r})\) and its multiple frequency components also have larger amplitudes, especially, when they coincide with the natural frequencies of the rotor-blade system or casing; the four-blade rubbing levels are related to the rotor whirl, and the most severe rubbing happens on the blade located at the right end of the whirl orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\({\varvec{C}}_{\mathrm{RB}}\) :

Viscous damping matrix of the rotor-blade system

\(c_{\mathrm{b}X}, c_{\mathrm{b}Y}, c_{\mathrm{b}Z}\) :

Bearing damping in XY and Z directions

\(c_{\mathrm{c}X}, c_{\mathrm{c}Y}\) :

Damping of the casing in X and Y directions

E :

Young’s modulus of blade

\({\varvec{e}}_{\mathrm{c}}\) :

Vector of the eccentricity of the static equilibrium positions of the rotor and casing center line

\({\varvec{F}}_{\mathrm{c}}\) :

Rubbing force vector of the casing

\({\varvec{F}}_{\mathrm{nonlinear},}, {\varvec{F}}_{\mathrm{rub}}\) :

Nonlinear force and rubbing force vectors of the rotor-blade system

\({\varvec{F}}_{\mathrm{nonlinear,b}},{\varvec{F}}_{\mathrm{nonlinear,s}}\) :

Nonlinear force vectors of the blade and shaft

\(F_{\mathrm{n}}, F_{\mathrm{t}}\) :

Normal and tangential rubbing forces

\(f_{\mathrm{n}i}\) :

The ith natural frequency of the rotor-blade system (Hz)

\(f_\mathrm{r}\) :

Rotational frequency

\(G_{\mathrm{b}}\) :

Shear modulus of the blade

\({\varvec{G}}_{\mathrm{b}},{\varvec{G}}_{\mathrm{d}}\) :

Coriolis matrices of the blade and disk

\({\varvec{G}}_{\mathrm{c}1},\ldots ,{\varvec{G}}_{\mathrm{c}6}\) :

Coupling terms of damping matrix

\({\varvec{G}}^{\mathrm{e}}\) :

Gyroscopic matrix of the Timoshenko beam element

\({\varvec{G}}_{\mathrm{RB}}\) :

A matrix including the Coriolis force matrices of the blades, damping matrix of bearings, and gyroscopic matrices of the shaft and rigid disk

\(g_{0}\) :

Gap between concentric rotor-blade and casing

\(J_{d}, J_{p}\) :

Diametric and polar mass moments of inertia of the disk

\({\varvec{K}}_{\mathrm{b}1}, {\varvec{K}}_{\mathrm{b}2}\) :

Stiffness matrices of the left and right bearings

\(k_{\mathrm{b}X}, k_{\mathrm{b}Y}, k_{\mathrm{b}Z}\) :

Stiffness of the bearing in XY and Z directions

\({\varvec{K}}_{\mathrm{c}}\) :

Stiffness matrix of the casing

\(k_{\mathrm{c}}\) :

Equivalent stiffness of the casing

\(k_{\mathrm{c}X}, k_{\mathrm{c}Y}\) :

Stiffness of the casing in X and Y directions

\({\varvec{K}}^{\mathbf{e}}\) :

Stiffness matrix of the Timoshenko beam element

\({\varvec{K}}_{\varvec{s}}\) :

The stiffness matrix of the shaft

L :

Length of the blade

\({\varvec{M}}_{\mathrm{b}}, {\varvec{M}}_{\mathrm{RB }}\) :

Mass matrices of the blade and rotor-blade system

\({\varvec{M}}_{\mathrm{c}}, {\varvec{M}}_{\mathrm{d}}\) :

Mass matrices of the casing and disk

\({\varvec{M}}_{\mathrm{c}1}, {\varvec{M}}_{\mathrm{c}2}, {\varvec{M}}_{\mathrm{c}3}\) :

Coupling terms of mass matrices

\({\varvec{M}}^{\mathbf{e}}\) :

mass matrix of the Timoshenko beam element

\({\varvec{M}}_{\mathbf{s}}\) :

Mass matrix of the shaft

\(M_{\mathrm{rub},X}, M_{\mathrm{rub},Y}, M_{\mathrm{rub},Z}\) :

Bending moments at the disk location in \(\theta \) \(_{X}\) and \(\theta \) \(_{Y}\) directions and the torque in \(\theta \) \(_{Z}\) direction

\(m_{\mathrm{d}}\) :

Mass of the disk

\(N_{\mathrm{b}}\) :

Blade number

\(N_{\mathrm{dof}}\) :

Number of DOFs for ith blade

\(N_{\mathrm{mod}}\) :

Number of modal truncation

\(N_{N\mathrm{s}}\) :

Number of DOFs for the shaft

\({\varvec{n}}_{i}\) :

Unit normal vector to the contact surface for the ith blade

\({\varvec{q}}_{\mathrm{b}}, {\varvec{q}}_{\mathrm{c}},{\varvec{q}}_{\mathrm{d}}, {\varvec{q}}_{\mathrm{r}}, {\varvec{q}}_{\mathrm{s}},{\varvec{q}}_{\mathrm{RB},}\) :

Generalized coordinate vectors of the blade, casing, disk, rotor, shaft and rotor-blade system

\(R_{\mathrm{c}}, R_{\mathrm{d}}\) :

Radius of the casing and disk

\(U_{m}(t), V_{m}(t), \psi _{m}(t)\) :

Canonical coordinates

\(\mathbf{u}_\mathrm{b}^i \) :

Displacement vector of the ith blade in the global coordinate system

\({\varvec{u}}_{\mathrm{c}}\) :

Displacement vector of casing

\({\varvec{u}}_{i}\) :

Displacement vector of the ith blade-casing relative motion in the global coordinate system

\(u, v,w, \varphi \) :

Longitudinal deformation, lateral deformation, swing deformation and cross-sectional rotation in blade local coordinate system

\(X_{\mathrm{d}}, Y_{\mathrm{d}}, Z_{\mathrm{d}}\) :

Displacements of the disk in XY and Z directions in the global coordinate system

\(\beta \) :

Stagger angle of the blade

\(\delta \) :

The penetration depth

\(\delta _{0}\) :

Initial penetration depth

\(\delta {u},{\delta {v}}, {\delta \varphi }\) :

Independence variables of variational operation

\(\theta (t)\) :

The angular displacement of the disk

\(\theta _{X\mathrm{d}}, \theta _{Y\mathrm{d}}\) and \(\theta _{Z\mathrm{d}} \) :

Swing angle of the disk in X and Y directions and torsional angle of the shaft

\(\dot{\theta }\) :

Angular velocity

\(\kappa \) :

Shear correction factor of the blade

\(\mu \) :

Friction coefficient

\(\xi _1, \xi _2\) :

Modal damping ratios (in this paper, \(\xi _1 =\xi _2 =0.02)\)

\(\upsilon \) :

Poisson’s ratio

\(\rho _{\mathrm{b}}\) :

Material density of the blade

\(\phi _{1m} (x), \phi _{2m} (x), \phi _{3m} (x)\) :

Modal shape functions

References

  1. Jacquet-Richardet, G., Torkhani, M., Cartraud, P., et al.: Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Pr. 40, 401–420 (2013)

    Article  Google Scholar 

  2. Muszynska, A.: Rotor to stationary element rub-related vibration phenomena in rotating machinery-literature survey. Shock Vib. Digest 21, 3–11 (1989)

    Article  Google Scholar 

  3. Jiang, J., Chen, Y.H.: Advances in the research on nonlinear phenomena in rotor/stator rubbing systems. Adv. Mech. 43, 132–148 (2013). (in Chinese)

    Google Scholar 

  4. Leong, M.S.: Field experiences of gas turbines vibrations—a review and case studies. J. Syst. Des. Dyn. 2, 24–35 (2008)

    Google Scholar 

  5. Legrand, M., Pierre, C., Peseux, B.: Structural modal interaction of a four degree of freedom bladed disk and casing model. J. Comput. Nonlinear. Dyn. 5, 13–41 (2010)

    Article  Google Scholar 

  6. Legrand, M., Pierre, C., Cartraud, P., et al.: Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction. J. Sound Vib. 319, 366–391 (2009)

    Article  Google Scholar 

  7. Lesaffre, N., Sinou, J.J., Thouverez, F.: Stability analysis of rotating beams rubbing on an elastic circular structure. J. Sound Vib. 299, 1005–1032 (2007)

    Article  Google Scholar 

  8. Sinha, S.K.: Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end. Int. J. Nonlinear. Mech. 40, 113–149 (2005)

    Article  MATH  Google Scholar 

  9. Sinha, S.K.: Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end. J. Appl. Mech. 74, 505–522 (2007)

    Article  MATH  Google Scholar 

  10. Kou, H.J., Yuan, H.Q.: Rub-induced non-linear vibrations of a rotating large deflection plate. Int. J. Nonlinear. Mech. 58, 283–294 (2014)

    Article  Google Scholar 

  11. Yuan, H.Q., Kou, H.J.: Contact-impact analysis of a rotating geometric nonlinear plate under thermal shock. J. Eng. Math. 90, 119–140 (2015)

    Article  MathSciNet  Google Scholar 

  12. Almeida, P., Gibert, G., Thouverez, F., et al.: On some physical phenomena involved in blade-casing contact. In: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July (2014)

  13. Batailly, A., Meingast, M., Legrand, M.: Unilateral contact induced blade/casing vibratory interactions in impellers: analysis for rigid casings. J. Sound Vib. 337, 244–262 (2015)

    Article  Google Scholar 

  14. Ma, H., Tai, X.Y., Han, Q.K., et al.: A revised model for rubbing between rotating blade and elastic casing. J. Sound Vib. 337, 301–320 (2015)

    Article  Google Scholar 

  15. Ma, H., Wang, D., Tai, X.Y., et al.: Vibration response analysis of blade-disk dovetail structure under blade tip rubbing condition. J. Vib. Control (2015). doi:10.1177/1077546315575835

    Google Scholar 

  16. Salvat, N., Batailly, A., Legrand, M.: Two-dimensional modeling of shaft precessional motions induced by blade/casing unilateral contact in aircraft engines. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers (2014)

  17. Kascak, A.F., Tomko, J. J.: Effects of Different Rub Models on Simulated Rotor Dynamics. NASA Technical Paper 2220 (1984)

  18. Padovan, J., Choy, F.K.: Nonlinear dynamics of rotor/blade/casing rub interactions. J. Turbomach. 109, 527–534 (1987)

    Article  Google Scholar 

  19. Lawrence, C., Carney, K., Gallardo, V.: A Study of Fan Stage/Casing Interaction Models. National Aeronautics and Space Administration, Glenn Research Center, NASA/TM–2003-212215 (2003)

  20. Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub. J. Sound Vib. 273, 875–919 (2004)

    Article  Google Scholar 

  21. Sinha, S.K.: Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads. J. Sound Vib. 332, 2253–2283 (2013)

    Article  Google Scholar 

  22. Lesaffre, N., Sinou, J.J., Thouverez, F.: Contact analysis of a flexible bladed-rotor. Eur. J. Mech. A-Solid. 26, 541–557 (2007)

    Article  MATH  Google Scholar 

  23. Parent, M., Thouverez, F., Chevillot, F.: Whole engine interaction in a bladed rotor-to-stator contact. In: Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers (2014)

  24. Parent, M., Thouverez, F., Chevillot F.: 3D interaction in bladed rotor-to-stator contact. In: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July (2014)

  25. Ma, H., Tai, X.Y., Niu, H.Q., et al.: Numerical research on rub-impact fault in a blade-rotor-casing coupling system. J. Vibroeng. 15, 1477–1489 (2013)

    Google Scholar 

  26. Petrov E.: Multiharmonic analysis of nonlinear whole engine dynamics with bladed disc-casing rubbing contacts. In: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers (2012)

  27. Thiery, F., Gustavsson, R., Aidanpaa, J.O.: Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts. Int. J. Mech. Sci. 99, 251–261 (2015)

    Article  Google Scholar 

  28. Ahrens, J., Ulbrich, H., Ahaus, G.: Measurement of contact forces during blade rubbing. In: Vibrations in Rotating Machinery, 7th International Conference, Nottingham, pp. 259–268. ImechE, London (2000)

  29. Padova, C., Barton, J., Dunn, M.G., et al.: Development of an experimental capability to produce controlled blade tip/shroud rubs at engine speed. J. Turbomach. 127, 726–735 (2005)

    Article  Google Scholar 

  30. Padova, C., Barton, J., Dunn, M.G., et al.: Experimental results from controlled blade tip/shroud rubs at engine speed. J. Turbomach. 129, 713–723 (2007)

  31. Chen, G., Liu, Y.Q., Jiang, G.Y., et al.: A novel method for identifying rotor-stator rubbing positions using the cepstrum analysis technique. J. Mech. Sci. Technol. 28, 3537–3544 (2014)

    Article  Google Scholar 

  32. Lim, M.H., Leong, M.S.: Detection of early faults in rotating machinery based on wavelet analysis. Adv. Mech. Eng. 2013, 1–8 (2013)

  33. Abdelrhman, A.M., Leong, M.S., Hee, L.M., et al.: Application of wavelet analysis in blade faults diagnosis for multi-stages rotor system. Appl. Mech. Mater. 393, 959–964 (2013)

    Article  Google Scholar 

  34. Ma, H., Lu, Y., Wu, Z.Y., et al.: A new dynamic model of rotor-blade systems. J. Sound Vib. 357, 168–194 (2015)

    Article  Google Scholar 

  35. Yang, C.H., Huang, S.C.: Coupling vibrations in rotating shaft-disk-blades system. J. Vib. Acoust. 129, 48–57 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by Program for the Joint Funds of the National Natural Science Foundation and the Civil Aviation Administration of China (Grant No. U1433109), the Fundamental Research Funds for the Central Universities (Grant Nos. N130403006 and N140301001) and the National Basic Research Program of China (Grant No. 2011CB706504) for providing financial support for this work. We also thank the anonymous reviewers for their valuable comments and Professor Ziqiang Lang and Dr. Yuzhu Guo from the University of Sheffield for the proof reading of the final version of the paper and offering suggestions on the improvement of presentation.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma.

Appendices

Appendix 1: Vectors and matrices related to the blades

  1. (1)

    \(\varvec{q}_\mathrm{b}\) is the generalized coordinates vector of the blades, where

    $$\begin{aligned} \varvec{q}_\mathrm{b}= & {} \left[ {{\begin{array}{lll} {\varvec{q}_\mathrm{b}^1}&{}\quad {\cdots \varvec{q}_\mathrm{b}^i \cdots } &{}\quad {\varvec{q}_\mathrm{b}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}},\nonumber \\ \varvec{q}_\mathrm{b}^i= & {} \left[ {{\begin{array}{lll} {{\varvec{U}^{i}}^{\mathrm{T}}}&{}\quad {{\varvec{V}^{i}}^{\mathrm{T}}}&{}\quad {{\varvec{\psi }^{i}}^{\mathrm{T}}} \\ \end{array} }} \right] ^{\mathrm{T}}, \end{aligned}$$
    (24)

    here, \(\varvec{U}^{i}=[U_{1 }^i,\ldots ,U_{{N_{\mathrm{mod}}}}^i ]^{\mathrm{T}}, \varvec{V}^{i}=\big [ V_{1}^i,\ldots ,V_{{N_{\mathrm{mod}}}}^i \big ]^{\mathrm{T}}, \varvec{\psi }^{i}=\big [ \psi _{1}^i,\ldots ,\psi _{{N_{\mathrm{mod}} } }^i \big ]^{\mathrm{T}}\).

  2. (2)

    \(\varvec{M}_\mathrm{b} \) is the mass matrix of the blades

    $$\begin{aligned} \varvec{M}_\mathrm{b} =\text {diag}[{\begin{array}{lllll} {\varvec{M}_\mathrm{b}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_\mathrm{b}^i }&{}\quad \cdots &{}\quad {\varvec{M}_\mathrm{b}^{N_\mathrm{b} } } \\ \end{array} }], \end{aligned}$$
    (25)

    where \(\varvec{M}_\mathrm{b}^i\) is the mass matrix of the ith blade, and the elements of \(\varvec{M}_\mathrm{b}^i\) are given as follows:

    $$\begin{aligned}&\varvec{M}_\mathrm{b}^i ({m,n})=\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{1n} } \phi _{1m} \text {d}x} \right] },\\&\varvec{M}_\mathrm{b}^i \left( {m+N_{\mathrm{mod}},n+N_{\mathrm{mod}} } \right) \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{2n} \phi _{2m} } \text {d}x} \right] },\\&\varvec{M}_\mathrm{b}^i \left( {m+2N_{\mathrm{mod}},n+2N_{\mathrm{mod}} } \right) \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\rho _\mathrm{b} \int _0^L {I_\mathrm{b} \phi _{3m} \phi _{3n} } \text {d}x} \right] }, \end{aligned}$$

    here, \(m,n=\xi =1,2,\ldots ,N_{\mathrm{mod}} \), and the surplus elements are all zero.

  3. (3)

    \(\varvec{G}_\mathrm{b} \) is the Coriolis force matrix of the blade:

    $$\begin{aligned} \varvec{G}_\mathrm{b} =\text {diag}[{\begin{array}{lllll} {\varvec{G}_\mathrm{b}^1 }&{}\quad \cdots &{}\quad {\varvec{G}_\mathrm{b}^i }&{}\quad \cdots &{}\quad {\varvec{G}_\mathrm{b}^{N_\mathrm{b} } } \\ \end{array} }], \end{aligned}$$
    (26)

    where \(\varvec{G}_\mathrm{b}^i \) is the Coriolis force matrix of the ith blade, and the elements of \(\varvec{G}_\mathrm{b}^i \) are given as follows:

    $$\begin{aligned}&\varvec{G}_\mathrm{b}^i \left( {m,n+N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {-2\dot{\theta }\rho _\mathrm{b} \text {cos}\beta \int _0^L {A_\mathrm{b} \phi _{2n} \phi _{1m} } \text {d}x} \right] },\nonumber \\&\varvec{G}_\mathrm{b}^i \left( {m+N_{\mathrm{mod}},n} \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {2\dot{\theta }\rho _\mathrm{b} \text {cos}\beta \int _0^L {A_\mathrm{b} \phi _{1n} \phi _{2m} } \text {d}x} \right] }, \end{aligned}$$

    and the surplus elements are all zero.

  4. (4)

    \(\varvec{K}_\mathrm{b}\) is the stiffness matrix of the blades:

    $$\begin{aligned} \varvec{K}_\mathrm{b} =\text {diag}\left[ {\begin{array}{lllll} {\varvec{K}_\mathrm{b}^1 }&{}\quad \cdots &{}\quad {\varvec{K}_\mathrm{b}^i }&{}\quad \cdots &{}\quad {\varvec{K}_\mathrm{b}^{N_\mathrm{b} } } \\ \end{array} }\right] , \end{aligned}$$
    (27)

where \(\varvec{K}_\mathrm{b}^i \) is the stiffness matrix of the ith blade, and the elements of \(\varvec{K}_\mathrm{b}^i\) are given as follows:

$$\begin{aligned}&\varvec{K}_\mathrm{b}^i ({m,n})=\sum _{n=1}^{N_{\mathrm{mod}} } \left[ -\dot{\theta }^{2}\rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{1n} \phi _{1m} } \text {d}x\right. \nonumber \\&\quad \left. +\left. {E_\mathrm{b} A_\mathrm{b} {\phi }'_{1n} \phi _{1m} } \right| _{x=L} -\int _0^L E_\mathrm{b} \left( {A}'_\mathrm{b} {\phi }'_{1n} \right. \right. \nonumber \\&\quad \left. \left. +A_\mathrm{b} {\phi }''_{1n} \right) \phi _{1m} \text {d}x \right] ,\\&\varvec{K}_\mathrm{b}^i \left( {m,n+N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {-\ddot{\theta }\text {cos}\beta \rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{2n} \phi _{1m} } \text {d}x} \right] },\\&\varvec{K}_\mathrm{b}^i \left( {m+N_{\mathrm{mod}},n} \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\ddot{\theta }\text {cos}\beta \rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{1n} \phi _{2m} } \text {d}x} \right] },\\ \end{aligned}$$
$$\begin{aligned}&\varvec{K}_\mathrm{b}^i \left( {m+N_{\mathrm{mod}},n+N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\begin{array}{l} \displaystyle \left. {\kappa G_\mathrm{b} A_\mathrm{b} {\phi }'_{2n} \phi _{2m} } \right| _{x=L} -\int _0^L {\kappa G_\mathrm{b} \left( {{A}'_\mathrm{b} {\phi }'_{2n} +A_\mathrm{b} {\phi }''_{2n} } \right) \phi _{2m} } \text {d}x \\ \displaystyle +f_\mathrm{c} (x)\left. {{\phi }'_{2n} \phi _{2m} } \right| _{x=L} -\int _0^L {\left( {{f}'_\mathrm{c} (x){\phi }'_{2n} +f_\mathrm{c} (x){\phi }''_{2n} } \right) \phi _{2m} } \text {d}x \\ \displaystyle +F_\mathrm{n} \left. {{\phi }'_{2n} \phi _{2m} } \right| _{x=L} -\int _0^L {\left( {F_\mathrm{n} {\phi }''_{2n} +{F}'_\mathrm{n} {\phi }'_{2n} } \right) \phi _{2m} } \text {d}x-\dot{\theta }^{2}\text {cos}^{\mathrm{2}}\beta \rho _\mathrm{b} \int _0^L {A_\mathrm{b} \phi _{2n} \phi _{2m} } \text {d}x \\ \end{array}} \right] }, \end{aligned}$$
$$\begin{aligned}&\varvec{K}_\mathrm{b}^i \left( {m+N_{\mathrm{mod}},n+2N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } \left[ -\left. \kappa G_\mathrm{b} A_\mathrm{b} \phi _{3n} \phi _{2m} \right| _{x=L} +\int _0^L \kappa G_\mathrm{b} \left( {A}'_\mathrm{b} \phi _{3n} \right. \right. \nonumber \\&\quad \left. \left. +A_\mathrm{b} {\phi }'_{3n} \right) \phi _{2m} \text {d}x \right] ,\\&\varvec{K}_\mathrm{b}^i \left( {m+2N_{\mathrm{mod}},n+N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {-\int _0^L {\kappa G_\mathrm{b} A_\mathrm{b} {\phi }'_{2n} \phi _{3m} } \text {d}x} \right] }, \end{aligned}$$
$$\begin{aligned}&\varvec{K}_\mathrm{b}^i \left( {m+2N_{\mathrm{mod}},n+2N_{\mathrm{mod}} } \right) \nonumber \\&\quad =\sum _{n=1}^{N_{\mathrm{mod}} } {\left[ {\begin{array}{l} \displaystyle \left. {E_\mathrm{b} I_\mathrm{b} {\phi }'_{3n} \phi _{3m} } \right| _{x=L} -\int _0^L {E_\mathrm{b} \left( {{I}'_\mathrm{b} {\phi }'_{3n} +I_\mathrm{b} {\phi }''_{3n} } \right) \phi _{3m} } \text {d}x \\ \displaystyle +\int _0^L {\kappa G_\mathrm{b} A_\mathrm{b} \phi _{3n} \phi _{3m} } \text {d}x-\dot{\theta }^{2}\rho _\mathrm{b} \int _0^L {I_\mathrm{b} \phi _{3n} \phi _{3m} } \text {d}x \\ \end{array}} \right] }, \end{aligned}$$

and the surplus elements are all zero.

Appendix 2: Coupled vectors and matrices related to rotor-blade systems

1.1 Mass matrix

The mass coupling matrix of rotor-blade systems is

$$\begin{aligned} \varvec{M}_\mathrm{c} =[\varvec{M}_{\mathrm{c1}},\varvec{M}_{\mathrm{c2}},\varvec{M}_{\mathrm{c3}},\varvec{M}_{\mathrm{c4}},\varvec{M}_{\mathrm{c5}},\varvec{M}_{\mathrm{c6}} ].\end{aligned}$$
(28)
  1. (1)

    \(\varvec{M}_{\mathrm{c1}}\) is the mass coupling term at the disk location in X direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}1} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}1}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}1}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}1}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}, \end{aligned}$$
    (29)

    where the superscript i denotes the ith blade. The elements of \(\varvec{M}_{\mathrm{c1}}^i\) are given as follows:

    $$\begin{aligned}&\varvec{M}_{\mathrm{c}1}^i \left( {m,1} \right) =\rho _\mathrm{b} \cos \vartheta _i \int _0^L {A_\mathrm{b} } \phi _{\mathrm{1}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}1}^i \left( {m+N_{\mathrm{mod}},1} \right) \\&\quad =-\rho _\mathrm{b} \sin \vartheta _i \text {cos}\beta \int _0^L {A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}1}^i \left( {m+2N_{\mathrm{mod}},1} \right) =0. \end{aligned}$$
  2. (2)

    \(\varvec{M}_{\mathrm{c2}}\) is the mass coupling term at the disk location in Y direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}2} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}2}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}2}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}2}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}. \end{aligned}$$
    (30)

    The elements of \(\varvec{M}_{\mathrm{c2}}^i \) are given as follows:

    $$\begin{aligned}&\varvec{M}_{\mathrm{c}2}^i \left( {m,1} \right) =\rho _\mathrm{b} \sin \vartheta _i \int _0^L {A_\mathrm{b} } \phi _{\mathrm{1}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}2}^i \left( {m+N_{\mathrm{mod}},1} \right) \\&\quad =\rho _\mathrm{b} \cos \vartheta _i \cos \beta \int _0^L {A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}2}^i \left( {m+2N_{\mathrm{mod}},1} \right) =0. \end{aligned}$$
  3. (3)

    \(\varvec{M}_{\mathrm{c3}} \) is the mass coupling term at the disk location in Z direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}3} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}3}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}3}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}3}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}.\end{aligned}$$
    (31)

    The elements of \(\varvec{M}_{\mathrm{c3}}^i \) are given as follows:

    $$\begin{aligned}&\varvec{M}_{\mathrm{c}3}^i ({m,1})=0,\\&\varvec{M}_{\mathrm{c}3}^i \left( {m+N_{\mathrm{mod}},1} \right) =\rho _\mathrm{b} \text {sin}\beta \int _0^L {A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}3}^i \left( {m+2N_{\mathrm{mod}},1} \right) =0. \end{aligned}$$
  4. (4)

    \(\varvec{M}_{\mathrm{c4}} \) is the mass coupling term at the disk location in \(\theta _{\mathrm{X}}\) direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}4} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}4}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}4}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}4}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}.\end{aligned}$$
    (32)

    The elements of \(\varvec{M}_{\mathrm{c4}}^i \) are given as follows:

    $$\begin{aligned}&\varvec{M}_{\mathrm{c}4}^i \left( {m,1} \right) =0,\\&\varvec{M}_{\mathrm{c}4}^i \left( {m+N_{\mathrm{mod}},1} \right) \\&\quad = \rho _\mathrm{b} \sin \vartheta _i \sin \beta \int _0^L {\left( {R_\mathrm{d} +x} \right) A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}4}^i \left( {m+2N_{\mathrm{mod}},1} \right) \\&\quad = \rho _\mathrm{b} \sin \vartheta _i \sin \beta \int _0^L {I_\mathrm{b} \phi _{3m} } \text {d}x. \end{aligned}$$
  5. (5)

    \(\varvec{M}_{\mathrm{c5}} \) is the mass coupling term at the disk location in \(\theta _{\mathrm{Y}}\) direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}5} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}5}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}5}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}5}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}.\end{aligned}$$
    (33)

    The elements of \(\varvec{M}_{\mathrm{c5}}^i \) are given as follows:

    $$\begin{aligned}&\varvec{M}_{\mathrm{c}5}^i ({m,1})=0,\\&\varvec{M}_{\mathrm{c}5}^i ({m+N_{\mathrm{mod}},1})\\&\quad =- \rho _\mathrm{b} \cos \vartheta _i \sin \beta \int _0^L {\left( {R_\mathrm{d} +x} \right) A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}5}^i \left( {m+2N_{\mathrm{mod}},1} \right) \\&\quad =-\rho _\mathrm{b} \cos \vartheta _i \sin \beta \int _0^L {I_\mathrm{b} \phi _{3m} } \text {d}x. \end{aligned}$$
  6. (6)

    \(\varvec{M}_{\mathrm{c6}} \) is the mass coupling term at the disk location in \(\theta _{\mathrm{Z}}\) direction.

    $$\begin{aligned} \varvec{M}_{\mathrm{c}6} =\left[ {{\begin{array}{lllll} {\varvec{M}_{\mathrm{c}6}^1 }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}6}^i }&{}\quad \cdots &{}\quad {\varvec{M}_{\mathrm{c}6}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}.\end{aligned}$$
    (34)

The elements of \(\varvec{M}_{\mathrm{c6}}^i \) are given as follows:

$$\begin{aligned}&\varvec{M}_{\mathrm{c}6}^i \left( {m,1} \right) =0,\\&\varvec{M}_{\mathrm{c}6}^i \left( {m+N_{\mathrm{mod}},1} \right) \\&\quad =\rho _\mathrm{b} \text {cos}\beta \int _0^L {\left( {R_\mathrm{d} +x} \right) A_\mathrm{b} } \phi _{\mathrm{2}m} \text {d}x,\\&\varvec{M}_{\mathrm{c}6}^i \left( {m+2N_{\mathrm{mod}},1} \right) \\&\quad =\rho _\mathrm{b} \text {cos}\beta \int _0^L {I_\mathrm{b} \phi _{3m} } \text {d}x. \end{aligned}$$

1.2 Damping matrix

The damping coupling matrix of rotor-blade systems at the disk location is

$$\begin{aligned} \varvec{G}_\mathrm{c} =[\varvec{G}_{\mathrm{c1}},\varvec{G}_{\mathrm{c2}},\varvec{G}_{\mathrm{c3}},\varvec{G}_{\mathrm{c4}},\varvec{G}_{\mathrm{c5}},\varvec{G}_{\mathrm{c6}} ], \end{aligned}$$
(35)

where \({\varvec{G}}_{\mathrm{c}i} =\mathbf 0 (i=1,2{\ldots }5)\), and the expression of \(\varvec{G}_{\mathrm{c6}} \) is

$$\begin{aligned} \varvec{G}_{\mathrm{c}6} =\left[ {{\begin{array}{lllll} {\varvec{G}_{\mathrm{c}6}^1 }&{}\quad \cdots &{}\quad {\varvec{G}_{\mathrm{c}6}^i }&{}\quad \cdots &{}\quad {\varvec{G}_{\mathrm{c}6}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}},\end{aligned}$$
(36)

where the elements of \(\varvec{G}_{\mathrm{c6}}^i \) are given as follows:

$$\begin{aligned}&\varvec{G}_{\mathrm{c}6}^i ({m,1})=-2\dot{\theta }\rho _\mathrm{b} \int _0^L {A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \phi _{1m} } \text {d}x,\\&\varvec{G}_{\mathrm{c}6}^i \left( {m+N_{\mathrm{mod}},1} \right) =0,\\&\varvec{G}_{\mathrm{c}6}^i \left( {m+2N_{\mathrm{mod}},1} \right) =0. \end{aligned}$$

1.3 Stiffness matrix

The stiffness coupling matrix of rotor-blade systems related to the acceleration at the disk location is

$$\begin{aligned} \varvec{K}_{\mathrm{ac}} =[\varvec{K}_{\mathrm{ac1}},\varvec{K}_{\mathrm{ac2}} ,\varvec{K}_{\mathrm{ac3}},\varvec{K}_{\mathrm{ac4}},\varvec{K}_{\mathrm{ac5}} ,\varvec{K}_{\mathrm{ac6}} ],\end{aligned}$$
(37)

where \({\varvec{K}}_{\mathrm{ac}i}=\varvec{0 }(i=1,2{\ldots }5)\), and the expression of \({\varvec{K}}_{\mathrm{ac6}}\) is

$$\begin{aligned} \varvec{K}_{\mathrm{ac}6} =\left[ {{\begin{array}{lllll} {\varvec{K}_{\mathrm{ac}6}^1 }&{}\quad \cdots &{}\quad {\varvec{K}_{\mathrm{ac}6}^i }&{}\quad \cdots &{}\quad {\varvec{K}_{\mathrm{ac}6}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}.\end{aligned}$$
(38)

The elements of \(\varvec{K}_{\mathrm{ac6}}^i \) are given as follows:

$$\begin{aligned}&\varvec{K}_{\mathrm{ac}6}^i \left( {m,1} \right) =-\ddot{\theta }\rho _\mathrm{b} \int _0^L {A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \phi _{1m} } \text {d}x,\\&\varvec{K}_{\mathrm{ac}6}^i \left( {m+N_{\mathrm{mod}},1} \right) =0,\\&\varvec{K}_{\mathrm{ac}6}^i \left( {m+2N_{\mathrm{mod}},1} \right) =0. \end{aligned}$$

The stiffness coupling matrix of rotor-blade systems is

$$\begin{aligned} \varvec{K}_\mathrm{c} =[\varvec{K}_{\mathrm{c1}},\varvec{K}_{\mathrm{c2}},\varvec{K}_{\mathrm{c3}},\varvec{K}_{\mathrm{c4}},\varvec{K}_{\mathrm{c5}},\varvec{K}_{\mathrm{c6}} ], \end{aligned}$$
(39)

where \({\varvec{K}}_{\mathrm{c}i}=\mathbf 0 \,(i=1,2{\ldots }5)\), and the expression of \({\varvec{K}}_{\mathrm{c6}}\) is

$$\begin{aligned} \varvec{K}_{\mathrm{c}6} =\left[ {{\begin{array}{lllll} {\varvec{K}_{\mathrm{c}6}^1 }&{}\quad \cdots &{}\quad {\varvec{K}_{\mathrm{c}6}^i }&{}\quad \cdots &{}\quad {\varvec{K}_{\mathrm{c}6}^{N_\mathrm{b} } } \\ \end{array} }} \right] ^{\mathrm{T}}. \end{aligned}$$
(40)

The elements of \(\varvec{K}_{\mathrm{c6}}^i \) are given as follows:

$$\begin{aligned}&\varvec{K}_{\mathrm{c}6}^i ({m,1})=0,\\&\varvec{K}_{\mathrm{c}6}^i ({m+N_{\mathrm{mod}},1})=-\dot{\theta }^{2}\cos \beta \rho _\mathrm{b} \int _0^L {A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \phi _{2m} } \text {d}x,\\&\varvec{K}_{\mathrm{c}6}^i \left( {m+2N_{\mathrm{mod}},1} \right) =-\dot{\theta }^{2}\cos \beta \rho _\mathrm{b} \int _0^L {I_\mathrm{b} \phi _{3m} } \text {d}x. \end{aligned}$$

Appendix 3: Other vectors and matrices related to the rotor-blade system

  1. (1)

    \(\tilde{\varvec{M}}_\mathrm{d} \) is the added mass matrix at the disk location.

$$\begin{aligned} \tilde{\varvec{M}}_\mathrm{d} =\left[ {{\begin{array}{llllll} {\tilde{M}_{{XX}} }&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{M}_{X\theta _Z } } \\ 0&{}\quad {\tilde{M}_{{YY}} }&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{M}_{Y\theta _Z } } \\ 0&{}\quad 0&{}\quad {\tilde{M}_{{ZZ}} }&{}\quad {\tilde{M}_{Z\theta _X } }&{}\quad {\tilde{M}_{Z\theta _Y } }&{}\quad 0 \\ 0&{}\quad 0&{}\quad {\tilde{M}_{\theta _X Z} }&{}\quad {\tilde{M}_{\theta _X \theta _X } }&{}\quad {\tilde{M}_{\theta _X \theta _Y } }&{}\quad {\tilde{M}_{\theta _X \theta _Z } } \\ 0&{}\quad 0&{}\quad {\tilde{M}_{\theta _Y Z} }&{}\quad {\tilde{M}_{\theta _Y \theta _X } }&{}\quad {\tilde{M}_{\theta _Y \theta _Y } }&{}\quad {\tilde{M}_{\theta _Y \theta _Z } } \\ {\tilde{M}_{\theta _Z X} }&{}\quad {\tilde{M}_{\theta _Z Y} }&{}\quad 0&{}\quad {\tilde{M}_{\theta _Z \theta _X } }&{}\quad {\tilde{M}_{\theta _Z \theta _Y } }&{}\quad {\tilde{M}_{\theta _Z \theta _Z } } \\ \end{array} }} \right] ,\end{aligned}$$
(41)

where, \(\tilde{M}_{{XX}} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } A_\mathrm{b} \text {d}x, \tilde{M}_{{YY}} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } A_\mathrm{b} \text {d}x, \tilde{M}_{{ZZ}} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } A_\mathrm{b} \text {d}x\),

$$\begin{aligned}&\tilde{M}_{\theta _X \theta _X } =\sum _{i=1}^{N_\mathrm{b} } \left( \sin ^{2}\vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \nonumber \\&\quad \left. +\sin ^{\mathrm{2}}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x+\cos ^{2}\vartheta _i \cos ^{\mathrm{2}}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \right) ,\\&\tilde{M}_{\theta _Y \theta _Y } =\sum _{i=1}^{N_\mathrm{b} } \left( \cos ^{2}\vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \nonumber \\&\quad \left. +\sin ^{\mathrm{2}}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x+\sin ^{2}\vartheta _i \cos ^{\mathrm{2}}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \right) ,\\&\tilde{M}_{\theta _Z \theta _Z } =m_\mathrm{d} e^{2}+\sum _{i=1}^{N_\mathrm{b} } \left( \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \nonumber \\&\quad \left. +\int _0^L {\rho _\mathrm{b} I_\mathrm{b} \text {cos}^{\mathrm{2}}\beta } \text {d}x \right) ,\\&\tilde{M}_{X\theta _Z } =\tilde{M}_{\theta _Z X} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {-\rho _\mathrm{b} } } A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \text {sin}\vartheta _i \text {d}x,\nonumber \\&\tilde{M}_{Y\theta _Z } =\tilde{M}_{\theta _Z Y} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \text {cos}\vartheta _i \text {d}x,\\&\tilde{M}_{Z\theta _X } =\tilde{M}_{\theta _X Z} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \text {sin}\vartheta _i \text {d}x,\nonumber \\&\tilde{M}_{Z\theta _Y } =\tilde{M}_{\theta _Y Z} =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {-\rho _\mathrm{b} } } A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \text {cos}\vartheta _i \text {d}x,\\&\tilde{M}_{\theta _X \theta _Y } =\tilde{M}_{\theta _Y \theta _X } \nonumber \\&\quad =\sum _{i=1}^{N_\mathrm{b} } \left( \int _0^L {-\rho _\mathrm{b} } A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{\mathrm{2}}\text {sin}\vartheta _i \cos \vartheta _i \text {d}x\right. \nonumber \\&\quad \left. +\int _0^L {\rho _\mathrm{b} } I_\mathrm{b} \text {sin}\vartheta _i \cos \vartheta _i \text {cos}^{\mathrm{2}}\beta \text {d}x\right) ,\\&\tilde{M}_{\theta _X \theta _Z } =\tilde{M}_{\theta _Z \theta _X } =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {\rho _\mathrm{b} } } I_\mathrm{b} \text {sin}\vartheta _i \text {sin}\beta \text {cos}\beta \text {d}x,\nonumber \\&\tilde{M}_{\theta _Y \theta _Z } =\tilde{M}_{\theta _Z \theta _Y } =\sum _{i=1}^{N_\mathrm{b} } {\int _0^L {-\rho _\mathrm{b} } } I_\mathrm{b} \cos \vartheta _i \text {sin}\beta \text {cos}\beta \text {d}x. \end{aligned}$$
  1. (2)

    \(\tilde{\varvec{G}}_\mathrm{d} \) is the added damping matrix at the disk location.

    $$\begin{aligned} \tilde{\varvec{G}}_\mathrm{d} =\left[ {{\begin{array}{llllll} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{G}_{\theta _X \theta _X } }&{}\quad {\tilde{G}_{\theta _X \theta _Y } }&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{G}_{\theta _Y \theta _X } }&{}\quad {\tilde{G}_{\theta _Y \theta _Y } }&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ \end{array} }} \right] ,\end{aligned}$$
    (42)

    where \(\tilde{G}_{\theta _X \theta _X } =\sum _{i=1}^{N_\mathrm{b} } \big ( 2\dot{\theta }\sin \vartheta _i \cos \vartheta _i \int _0^L \rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2} \text {d}x-2\dot{\theta }\sin \vartheta _i \cos \vartheta _i \cos ^{2}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \big )\),

    $$\begin{aligned} \tilde{G}_{\theta _Y \theta _Y }= & {} \sum _{i=1}^{N_\mathrm{b} } \left( -2\dot{\theta }\sin \vartheta _i \cos \vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \\&\left. +2\dot{\theta }\sin \vartheta _i \cos \vartheta _i \cos ^{2}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \right) ,\\ \tilde{G}_{\theta _X \theta _Y }= & {} \sum _{i=1}^{N_\mathrm{b} } \left( 2\dot{\theta }\sin ^{2}\vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \\&\left. +2\dot{\theta }\cos ^{2}\vartheta _i \cos ^{2}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \right) ,\\ \tilde{G}_{\theta _Y \theta _X }= & {} \sum _{i=1}^{N_\mathrm{b} } \left( -2\dot{\theta }\cos ^{2}\vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x\right. \\&\left. -2\dot{\theta }\sin ^{2}\vartheta _i \cos ^{2}\beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \right) . \end{aligned}$$
  2. (3)

    \(\tilde{K}_\mathrm{d} \) is the added stiffness matrix at the disk location.

    $$\begin{aligned} \tilde{K}_\mathrm{d} =\left[ {{\begin{array}{llllll} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{K}_{\theta _X \theta _X } }&{}\quad {\tilde{K}_{\theta _X \theta _Y } }&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{K}_{\theta _Y \theta _X } }&{}\quad {\tilde{K}_{\theta _Y \theta _Y } }&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {\tilde{K}_{\theta _Z \theta _Z } } \\ \end{array} }} \right] ,\nonumber \\\end{aligned}$$
    (43)

where

$$\begin{aligned}&\tilde{K}_{\theta _X \theta _X } =\sum \limits _{i=1}^{N_\mathrm{b} } \left( {\begin{array}{l} \displaystyle \left( {\ddot{\theta }\sin \vartheta _i \cos \vartheta _i -\dot{\theta }^{2}\sin ^{\mathrm{2}}\vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x \\ \displaystyle +\left( {-\ddot{\theta }\sin \vartheta _i \cos \vartheta _i \text {cos}^{\mathrm{2}}\beta -\dot{\theta }^{2}\cos ^{\mathrm{2}}\vartheta _i \text {cos}^{\mathrm{2}}\beta } \right) \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \\ \end{array}} \right) ,\\&\tilde{K}_{\theta _Y \theta _Y } =\sum _{i=1}^{N_\mathrm{b} } \left( {\begin{array}{l} \displaystyle \left( {-\ddot{\theta }\sin \vartheta _i \cos \vartheta _i -\dot{\theta }^{2}\cos ^{2}\vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x \\ \displaystyle +\left( {\ddot{\theta }\sin \vartheta _i \cos \vartheta _i \text {cos}^{\mathrm{2}}\beta -\dot{\theta }^{2}\sin ^{\mathrm{2}}\vartheta _i \text {cos}^{\mathrm{2}}\beta } \right) \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \\ \end{array}} \right) ,\\&\tilde{K}_{\theta _X \theta _Y } =\sum _{i=1}^{N_\mathrm{b} } \left( {\begin{array}{l} \displaystyle \left( {\ddot{\theta }\sin ^{2}\vartheta _i +\dot{\theta }^{2}\sin \vartheta _i \cos \vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x \\ \displaystyle +\left( {\ddot{\theta }\cos ^{2}\vartheta _i \text {cos}^{\mathrm{2}}\beta -\dot{\theta }^{2}\sin \vartheta _i \cos \vartheta _i \text {cos}^{\mathrm{2}}\beta } \right) \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \\ \end{array}} \right) ,\\&\tilde{K}_{\theta _Y \theta _X } =\sum _{i=1}^{N_\mathrm{b} } \left( {\begin{array}{l} \displaystyle \left( {-\ddot{\theta }\cos ^{2}\vartheta _i +\dot{\theta }^{2}\sin \vartheta _i \cos \vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}} \text {d}x \\ \displaystyle -\left( {\ddot{\theta }\sin ^{2}\vartheta _i \text {cos}^{\mathrm{2}}\beta +\dot{\theta }^{2}\sin \vartheta _i \cos \vartheta _i \text {cos}^{\mathrm{2}}\beta } \right) \int _0^L {\rho _\mathrm{b} I_\mathrm{b} } \text {d}x \\ \end{array}} \right) ,\\&\tilde{K}_{\theta _Z \theta _Z } =\sum _{i=1}^{N_\mathrm{b} } \left( {-\int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}\dot{\theta }^{2}} \text {d}x-\int _0^L {\rho _\mathrm{b} I_\mathrm{b} \dot{\theta }^{2}\text {cos}^{\mathrm{2}}\beta } \text {d}x} \right) . \end{aligned}$$

Appendix 4: Element matrices of the rotational shaft

The element consistent mass matrix of Timoshenko beam \({\varvec{M}}^{\mathrm{e}}\) is

$$\begin{aligned} \varvec{M}^{\mathrm{e}}=\rho A_s l\left[ {{\begin{array}{llllllllllll} a&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad a&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad {1/3}&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-c}&{}\quad 0&{}\quad g&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad {\text {Symmetric}}&{}\quad &{}\quad &{}\quad \\ c&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad g&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {J/(3A_s )}&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ b&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad d&{}\quad 0&{}\quad a&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad b&{}\quad 0&{}\quad {-d}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad a&{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad {1/6}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {1/3}&{}\quad &{}\quad &{}\quad \\ 0&{}\quad d&{}\quad 0&{}\quad f&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad c&{}\quad 0&{}\quad g&{}\quad &{}\quad \\ {-d}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad f&{}\quad 0&{}\quad {-c}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad g&{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {J/(6A_s )}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {J/(3A_s )} \\ \end{array} }} \right] , \end{aligned}$$
(44)

where

$$\begin{aligned} a= & {} \frac{\frac{13}{35}+\frac{7}{10}\phi +\frac{1}{3}\phi ^{2}+\frac{6}{5}(r_g /l)^{2}}{(1+\phi )^{2}},\\ b= & {} \frac{\frac{9}{70}+\frac{3}{10}\phi +\frac{1}{6}\phi ^{2}-\frac{6}{5}(r_g /l)^{2}}{(1+\phi )^{2}},\\ c= & {} \frac{\left[ {\frac{11}{210}+\frac{11}{120}\phi +\frac{1}{24}\phi ^{2}+\left( {\frac{1}{10}-\frac{1}{2}\phi } \right) (r_g /l)^{2}} \right] l}{(1+\phi )^{2}}, \\ d= & {} \frac{\left[ {\frac{13}{420}+\frac{3}{40}\phi +\frac{1}{24}\phi ^{2}-\left( {\frac{1}{10}-\frac{1}{2}\phi } \right) (r_g /l)^{2}} \right] l}{(1+\phi )^{2}},\\ f= & {} \frac{\left[ {\frac{1}{140}+\frac{1}{60}\phi +\frac{1}{120}\phi ^{2}+\left( {\frac{1}{30}+\frac{1}{6}\phi -\frac{1}{6}\phi ^{2}} \right) (r_g /l)^{2}} \right] l^{2}}{(1+\phi )^{2}},\\ g= & {} \frac{\left[ {\frac{1}{105}+\frac{1}{60}\phi +\frac{1}{120}\phi ^{2}+\left( {\frac{2}{15}+\frac{1}{6}\phi +\frac{1}{3}\phi ^{2}} \right) (r_g /l)^{2}} \right] l^{2}}{(1+\phi )^{2}}, \end{aligned}$$

in which the transverse shear parameter \(\phi =\frac{12EI}{\kappa _1 A_s Gl^{2}}\); I is the area moment of inertia; \(\kappa _1 =\frac{6(1+\upsilon )}{7+6\upsilon }\) is the shape of factor; \(A_{{s}}\) is the shaft cross-sectional area; G is shear modulus; l is element length; J is polar area moment of inertia; the radius of gyration \(r_g =\sqrt{I/{A_s }}\).

Element stiffness matrix of Timoshenko beam \({\varvec{K}}^{\mathrm{e}}\) is

$$\begin{aligned} \varvec{K}^{\mathrm{e}}=\left[ {{\begin{array}{cccccccccccc} h&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad h&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad {A_s E/l}&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-i}&{}\quad 0&{}\quad j&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad {\text {Symmetric}}&{}\quad &{}\quad &{}\quad \\ i&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad j&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {GJ/l}&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ {-h}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {-i}&{}\quad 0&{}\quad h&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-h}&{}\quad 0&{}\quad i&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad h&{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad {-A_s E/l}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {A_s E/l}&{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-i}&{}\quad 0&{}\quad k&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad i&{}\quad 0&{}\quad j&{}\quad &{}\quad \\ i&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad k&{}\quad 0&{}\quad {-i}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad j&{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {-GJ/l}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {GJ/l} \\ \end{array} }} \right] ,\end{aligned}$$
(45)

where \(h=\frac{12EI}{l^{3}(1+\phi )}, i=\frac{6EI}{l^{2}(1+\phi )}, j=\frac{(4+\phi )EI}{l(1+\phi )}\) and \(k=\frac{(2-\phi )EI}{l(1+\phi )}\).

Gyroscopic matrix of Timoshenko beam \({\varvec{G}}^{\mathrm{e}}\) is

$$\begin{aligned} \varvec{G}^{\mathrm{e}}=2\dot{\theta }\rho A_s l\left[ {{\begin{array}{cccccccccccc} 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ {-p}&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ {-q}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad {\text {Antisymmetric}}&{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-q}&{}\quad 0&{}\quad {-s}&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad {-p}&{}\quad 0&{}\quad {-q}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad &{}\quad \\ p&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {-q}&{}\quad 0&{}\quad {-p}&{}\quad 0&{}\quad &{}\quad &{}\quad &{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad &{}\quad \\ {-q}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad w&{}\quad 0&{}\quad q&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad &{}\quad \\ 0&{}\quad {-q}&{}\quad 0&{}\quad {-w}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad q&{}\quad 0&{}\quad {-s}&{}\quad 0&{}\quad \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ \end{array} }} \right] ,\end{aligned}$$
(46)

where \(p=\frac{{6r_g^2 }/5}{l^{2}(1+\phi )^{2}}, q=\frac{-\left( {\frac{1}{10}-\frac{1}{2}\phi } \right) r_g^2 }{l\left( {1+\phi } \right) ^{2}}\), \(s=\frac{\left( {\frac{2}{15}+\frac{1}{6}\phi +\frac{1}{3}\phi ^{2}} \right) r_g^2 }{\left( {1+\phi } \right) ^{2}}\) and \(w=\frac{-\left( {\frac{1}{30}+\frac{1}{6}\phi -\frac{1}{6}\phi ^{2}} \right) r_g^2 }{\left( {1+\phi } \right) ^{2}}\).

Appendix 5: Nonlinear forces of the rotor-blade system

  1. (1)

    \(\varvec{F}_{\mathrm{nonlinear,\,b}}^i \) is a nonlinear force vector of ith blade:

    $$\begin{aligned}&\varvec{F}_{\mathrm{nonlinear,\,b}}^i \left( {m,1} \right) =\dot{\theta }^{2}\rho _\mathrm{b} \\&\quad \int _0^L {\left( {R_\mathrm{d} +x} \right) \phi _{1m} A_\mathrm{b} } \text {d}x,\\&\varvec{F}_{\mathrm{nonlinear,\,b}}^i \left( {m+N_{\mathrm{mod}},1} \right) \nonumber \\&\quad =\left( {\begin{array}{l} -\ddot{\theta }\text {cos}\beta \\ -2\sin \vartheta _i \sin \beta \dot{\theta }_{Y\mathrm{d}} \dot{\theta }-\sin \vartheta _i \sin \beta \theta _{Y\mathrm{d}} \ddot{\theta } \\ -\cos \vartheta _i \sin \beta \theta _{Y\mathrm{d}} \dot{\theta }^{2}-2\cos \vartheta _i \sin \beta \dot{\theta }_{X\mathrm{d}} \dot{\theta } \\ -\cos \vartheta _i \sin \beta \theta _{X\mathrm{d}} \ddot{\theta }+\sin \vartheta _i \sin \beta \theta _{X\mathrm{d}} \dot{\theta }^{2} \\ \end{array}} \right) \end{aligned}$$
    $$\begin{aligned}&\quad \rho _\mathrm{b} \int _0^L {A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \phi _{2m} } \text {d}x, \end{aligned}$$
    (47)
    $$\begin{aligned}&\varvec{F}_{\mathrm{nonlinear},\text {b}}^i \left( {m+2N_{\mathrm{mod}},1} \right) \nonumber \\&\quad =-\ddot{\theta }\text {cos}\beta \rho _\mathrm{b} \int _0^L {I_\mathrm{b} \phi _{3m} } \text {d}x.\end{aligned}$$
    (48)
  2. (2)

    \(f_{\mathrm{nonlinear},X}\) is a nonlinear force applied on the disk in X direction.

$$\begin{aligned}&f_{\mathrm{nonlinear,}\;X} =em_\mathrm{d} \cos \left( {\theta +\theta _{Z\mathrm{d}} } \right) \left( {\dot{\theta }+\dot{\theta }_{Z\mathrm{d}} } \right) ^{2}\nonumber \\&\quad +em_\mathrm{d} \sin \left( {\theta +\theta _{Z\mathrm{d}} } \right) \left( {\ddot{\theta }+\ddot{\theta }_{Z\mathrm{d}} } \right) \nonumber \\&\quad +\sum _{i=1}^{N_\mathrm{b} } {\sum _{i=1}^{N_{\mathrm{mod}} } {\left( {\begin{array}{l} \displaystyle 2\dot{\theta }\sin \vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{1m} \dot{U}_m \text {d}x} \\ \displaystyle +\left( {\dot{\theta }^{2}\cos \vartheta _i +\ddot{\theta }\sin \vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{1m} U_m \text {d}x} \\ \end{array}} \right) } } \nonumber \\&\displaystyle \quad +\sum _{i=1}^{N_\mathrm{b} } {\sum _{i=1}^{N_{\mathrm{mod}} } {\left( {\begin{array}{l} \displaystyle 2\dot{\theta }\cos \vartheta _i \text {cos}\beta \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{2m} \dot{V}_m \text {d}x} \\ \displaystyle +\left( {-\dot{\theta }^{2}\sin \vartheta _i +\ddot{\theta }\cos \vartheta _i } \right) \text {cos}\beta \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{2m} V_m \text {d}x} \\ \end{array}} \right) } } \nonumber \\&\quad +\sum _{i=1}^{N_\mathrm{b} } \left( \left( {\begin{array}{l} 2\dot{\theta }_{Z\mathrm{d}} \dot{\theta }\cos \vartheta _i -\theta _{Z\mathrm{d}} \dot{\theta }^{2}\sin \vartheta _i +\theta _{Z\mathrm{d}} \ddot{\theta }\cos \vartheta _i \\ +\dot{\theta }^{2}\cos \vartheta _i +\ddot{\theta }\sin \vartheta _i \\ \end{array}} \right) \right. \nonumber \\&\quad \left. \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) \text {d}x} \right) .\end{aligned}$$
(49)
  1. (3)

    \(f_{{\mathrm{nonlinear}},Y}\) is a nonlinear force applied on the disk in Y direction.

$$\begin{aligned}&f_{\mathrm{nonlinear, }Y} =em_\mathrm{d} \text {sin}\left( {\theta +\theta _{Z\mathrm{d}} } \right) \left( {\dot{\theta }+\dot{\theta }_{Z\mathrm{d}} } \right) ^{2}\nonumber \\&\quad -em_\mathrm{d} \cos \left( {\theta +\theta _{Z\mathrm{d}} } \right) \left( {\ddot{\theta }+\ddot{\theta }_{Z\mathrm{d}} } \right) \nonumber \\&\quad +\sum _{i=1}^{N_\mathrm{b} } {\sum _{i=1}^{N_{\mathrm{mod}} } {\left( {\begin{array}{l} -2\dot{\theta }\cos \vartheta _i \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{1m} \dot{U}_m \text {d}x} \\ +\left( {\dot{\theta }^{2}\sin \vartheta _i -\ddot{\theta }\cos \vartheta _i } \right) \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{1m} U_m \text {d}x} \\ \end{array}} \right) } } \nonumber \\&\quad +\sum _{i=1}^{N_\mathrm{b} } {\sum _{i=1}^{N_{\mathrm{mod}} } {\left( {\begin{array}{l} 2\dot{\theta }\sin \vartheta _i \text {cos}\beta \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{2m} \dot{V}_m \text {d}x} \\ +\left( {\dot{\theta }^{2}\cos \vartheta _i +\ddot{\theta }\sin \vartheta _i } \right) \text {cos}\beta \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \phi _{2m} V_m \text {d}x} \\ \end{array}} \right) } } \nonumber \\&\quad +\sum _{i=1}^{N_\mathrm{b} } \left( \left( {\begin{array}{l} 2\dot{\theta }_{z\mathrm{d}} \dot{\theta }\sin \vartheta _i +\theta _{Z\mathrm{d}} \dot{\theta }^{2}\cos \vartheta _i +\theta _{Z\mathrm{d}} \ddot{\theta }\sin \vartheta _i \\ +\dot{\theta }^{2}\sin \vartheta _i -\ddot{\theta }\cos \vartheta _i \\ \end{array}} \right) \right. \nonumber \\&\quad \left. \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {\text {R}_\mathrm{d} +x} \right) \text {d}x} \right) .\end{aligned}$$
(50)
  1. (4)

    \(f_{{\mathrm{nonlinear}},Z}\) is a nonlinear force applied on the disk in Z direction.

$$\begin{aligned} f_{\mathrm{nonlinear,}Z}= & {} \sum _{i=1}^{N_\mathrm{b} } \left( \left( {\begin{array}{l} -2\dot{\theta }_{Y\mathrm{d}} \dot{\theta }\sin \vartheta _i -\theta _{Y\mathrm{d}} \ddot{\theta }\sin \vartheta _i -\theta _{Y\mathrm{d}} \dot{\theta }^{2}\cos \vartheta _i \\ -2\dot{\theta }_{X\mathrm{d}} \dot{\theta }\cos \vartheta _i -\theta _{X\mathrm{d}} \ddot{\theta }\cos \vartheta _i +\theta _{X\mathrm{d}} \dot{\theta }^{2}\sin \vartheta _i \\ \end{array}} \right) \right. \nonumber \\&\left. \quad \int _0^L {\rho _\mathrm{b} A_\mathrm{b} \left( {\text {R}_\mathrm{d} +x} \right) \text {d}x} \right) . \end{aligned}$$
(51)
  1. (5)

    \(M_{\mathrm{nonlinear},X}\) is a nonlinear bending moment applied on the disk in \(\theta _{\mathrm{X}}\) direction.

    $$\begin{aligned}&M_{\mathrm{nonlinear},\,X} =-J_p \dot{\theta }_{Y\mathrm{d}} \dot{\theta }_{Z\mathrm{d}} \nonumber \\&+\sum _{i=1}^{N_\mathrm{b} } \left( \left( {\begin{array}{l} -2\dot{\theta }_{Z\mathrm{d}} \dot{\theta }\hbox {cos}\vartheta _i -\theta _{Z\mathrm{d}} \ddot{\theta }\cos \vartheta _i \\ +\theta _{Z\mathrm{d}} \dot{\theta }^{2}\sin \vartheta _i -\ddot{\theta }\sin \vartheta _i -\dot{\theta }^{2}\cos \vartheta _i \\ \end{array}} \right) \right. \nonumber \\&\quad \left. \sin \beta \cos \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \hbox {d}x} \right) \nonumber \\&+\sum _{i=1}^{N_\mathrm{b} } \sum _{i=1}^{N_{\mathrm{mod}} }\nonumber \\&\times \left( {\begin{array}{l} \displaystyle -2\dot{\theta }\hbox {cos}\vartheta _i \sin \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \phi _{\mathrm{3m}} \dot{\psi }_\mathrm{m} \hbox {d}x} \\ +\left( {-\ddot{\theta }\cos \vartheta _i +\dot{\theta }^{2}\sin \vartheta _i } \right) \sin \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \phi _{\mathrm{3m}} \psi _\mathrm{m} \hbox {d}x} \\ \end{array}} \right) \end{aligned}$$
    (52)
  1. (6)

    \(M_{\mathrm{nonlinear},Y}\) is a nonlinear bending moment applied on the disk in \(\theta _{\mathrm{Y}}\) direction.

    $$\begin{aligned}&M_{\mathrm{nonlinear},\;Y} =J_p \left( {\ddot{\theta }\theta _{X\mathrm{d}} +\ddot{\theta }_{Z\mathrm{d}} \theta _{X\mathrm{d}} +\dot{\theta }_{Z\mathrm{d}} \dot{\theta }_{X\mathrm{d}} } \right) \nonumber \\&+\sum _{i=1}^{N_\mathrm{b} } \left( \left( {\begin{array}{l} -2\dot{\theta }_{Z\mathrm{d}} \dot{\theta }\sin \vartheta _i -\theta _{Z\mathrm{d}} \ddot{\theta }\sin \vartheta _i \\ -\theta _{Z\mathrm{d}} \dot{\theta }^{2}\cos \vartheta _i +\ddot{\theta }\cos \vartheta _i -\dot{\theta }^{2}\sin \vartheta _i \\ \end{array}} \right) \right. \nonumber \\&\quad \left. \sin \beta \cos \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \hbox {d}x} \right) \nonumber \\&+\sum _{i=1}^{N_\mathrm{b} } \sum _{i=1}^{N_{\mathrm{mod}} }\nonumber \\&\times \left( {\begin{array}{l} \displaystyle -2\dot{\theta }\hbox {sin}\vartheta _i \sin \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \phi _{\mathrm{3m}} \dot{\psi }_\mathrm{m} \hbox {d}x} \\ +\left( {-\ddot{\theta }\sin \vartheta _i -\dot{\theta }^{2}\cos \vartheta _i } \right) \sin \beta \int _0^L {\rho _\mathrm{b} I_\mathrm{b} \phi _{\mathrm{3m}} \psi _\mathrm{m} \hbox {d}x} \\ \end{array}} \right) \nonumber \\ .\end{aligned}$$
    (53)
  2. (7)

    \(M_{\mathrm{nonlinear},Z}\) is a nonlinear torque applied on the disk in \(\theta \hbox {z}\) direction.

    $$\begin{aligned}&M_{\mathrm{nonlinear},\;Z} =em_\mathrm{d} \sin \left( {\theta +\theta _{Z\mathrm{d}} } \right) \ddot{X}_\mathrm{d} \nonumber \\&\quad -em_\mathrm{d} \cos \left( {\theta +\theta _{Z\mathrm{d}} } \right) \ddot{Y}_\mathrm{d} -e^{2}m_\mathrm{d} \ddot{\theta }-J_\mathrm{p} \ddot{\theta } \nonumber \\&+J_p \left( {\dot{\theta }_{X\mathrm{d}} \dot{\theta }_{Y\mathrm{d}} +\theta _{X\mathrm{d}} \ddot{\theta }_{Y\mathrm{d}} } \right) \nonumber \\&\quad -\sum _{i=1}^{N_\mathrm{b} } {\left( {\ddot{\theta }\rho _\mathrm{b} \int _0^L {\left( {A_\mathrm{b} \left( {R_\mathrm{d} +x} \right) ^{2}+I_\mathrm{b} \cos ^{2}\beta } \right) } \hbox {d}x} \right) }.\nonumber \\ \end{aligned}$$
    (54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Yin, F., Wu, Z. et al. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn 84, 1225–1258 (2016). https://doi.org/10.1007/s11071-015-2564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2564-5

Keywords

Navigation