Skip to main content
Log in

A delayed prey–predator system with prey subject to the strong Allee effect and disease

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, an eco-epidemiological model with strong Allee effect in prey population growth is presented by a system of delay differential equations. The time lag in terms of the delay parameter corresponds to the predator gestation period. We inspect elementary mathematical characteristic of the proposed model such as uniform persistence, stability and Hopf bifurcation at the interior equilibrium point of the system. We execute several numerical simulations to illustrate the proposed mathematical model and our analytical findings. We use basic tools of nonlinear dynamic analysis as first return maps, Poincare sections and Lyapunov exponents to identify chaotic behavior of the system. We observe that the system exhibits chaotic oscillation due to the increase of the delay parameter. Such chaotic behavior can be suppressed by the strength of Allee effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allee, W.C.: Animal Aggregations. A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  2. Allen, J.C., Schaffer, W.M., Rosko, D.: Chaos reduces species extinctions by amplifying local population noise. Nature 364, 229–232 (1993)

    Article  Google Scholar 

  3. Amarasekare, P.: Interactions between local dynamics and dispersal: insights from single species models. Theor. Popul. Biol. 53, 44–59 (1998)

    Article  MATH  Google Scholar 

  4. Angulo, E., Roemer, G.W., Berec, L., Gascoigen, J., Courchamp, F.: Double Allee effects and extinction in the island fox. Conserv. Biol. 21, 1082–1091 (2007)

    Article  Google Scholar 

  5. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a comparative study. J. Theor. Biol. 248, 10–25 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bate, M.A., Hilker, M.F.: Disease in group-defending prey can benefit predators. Theor. Ecol. 7, 87–100 (2014)

    Article  Google Scholar 

  7. Beretta, E., Kuang, Y.: Convergence results in a well-known delayed predator–prey system. J. Math. Anal. Appl. 204, 840–853 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berezovskaya, F.S., Song, B., Castillo-Chavez, C.: Role of prey dispersal and refuges on predator–prey dynamics. SIAM J. Appl. Math. 70, 1821–1839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, S., Sasmal, S.K., Samanta, S., Saifuddin, Md, Ahmed, Q.J.K., Chattopadhyay, J.: A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 263, 198–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, S., Sasmal, S.K., Saifuddin, Md, Chattopadhyay, J.: On existence of multiple periodic solutions for Lotka–Volterra’s predator–prey model with Allee effects. Nonlinear Stud. 22(2), 189–199 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Burrows, R., Hofer, H., East, M.L.: Population dynamics, intervention and survival in African wild dogs (Lycaon pictus). Proc. R. Soc. B Biol. Sci. 262, 235–245 (1995)

    Article  Google Scholar 

  12. Celik, C., Merdan, H., Duman, O., Akin, O.: Allee effects on population dynamics with delay. Chaos Solitons Fractals 37, 65–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chattopadhyay, J., Bairagi, N.: Pelicans at risk in Salton Sea—an eco-epidemiological study. Ecol. Model. 136, 103–112 (2001)

    Article  Google Scholar 

  15. Chattopadhyay, J., Pal, S.: Viral infection on phytoplankton–zooplankton system—a mathematical model. Ecol. Model. 151, 15–28 (2002)

    Article  Google Scholar 

  16. Chen, Y., Yu, J., Sun, C.: Stability and Hopf bifurcation analysis in a three-level food chain system with delay. Chaos Solitons Fractals 31, 683–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chunjin, W., Chen, L.: Periodic solution and heteroclinic bifurcation in a predator–prey system with allee effect and impulsive harvesting. Nonlinear Dyn. 76(2), 1109–1117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clifford, D.L., Mazet, J.A.K., Dubovi, E.J., Garcelon, D.K., Coonan, T.J., Conrad, P.A., Munson, L.: Pathogen exposure in endangered island fox (Urocyon littoralis) populations: implications for conservation management. Biol. Conserv. 131, 230–243 (2006)

    Article  Google Scholar 

  19. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Multipack dynamics and the Allee effect in the African wild dog (Lycaon pictus). Anim. Conserv. 3, 277–285 (2000)

    Article  Google Scholar 

  20. Courchamp, F., Grenfell, B., Clutton-Brock, T.: Impact of natural enemies on obligately cooperatively breeders. Oikos 91, 311–322 (2000)

    Article  Google Scholar 

  21. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  22. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  23. Cushing, J.M.: Periodic time-dependent predator–prey systems. SIAM J. Appl. Math. 32, 82–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Das, P., Mukandavire, Z., Chiyaka, C., Sen, A., Mukherjee, D.: Bifurcation and chaos in S-I-S epidemic model. Differ. Equ. Dyn. Syst. 17(4), 393–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, T., Liao, X.: Bogdanov–Takens bifurcation in a trineuron BAM neural network model with multiple delays. Nonlinear Dyn. 71(3), 583–595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Drake, J.: Allee effects and the risk of biological invasion. Risk Anal. 24, 795–802 (2004)

    Article  Google Scholar 

  27. Elaydi, S., Sacker, R.J.: Population models with Allee effect: a new model. J. Biol. Dyn. 4, 397–408 (2010)

    Article  MathSciNet  Google Scholar 

  28. Faria, T.: Stability and bifurcation for a delay predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254, 433–463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ferdy, J., Austerlitz, F., Moret, J., Gouyon, P., Godelle, B.: Pollinator-induced density dependence in deceptive species. Oikos 87, 549–560 (1999)

    Article  Google Scholar 

  30. Freedman, H.I., Rao, V.S.H.: The tradeoff between mutual interference and time lag in predator prey models. Bull. Math. Biol. 45, 991–1004 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Freedman, H.I., So, J., Waltman, P.: Coexistence in a model of competition in the chemostat incorporating discrete time delays. SIAM J. Appl. Math. 49, 859–870 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gopalsamy, K.: Stability and Oscillation in Delay Differential Equation of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  33. Groom, M.: Allee effects limit population viability of an annual plant. Am. Nat. 151, 487–496 (1998)

    Article  Google Scholar 

  34. Hadeler, K.P., Freedman, H.I.: Predator-prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20(2), 388–395 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassard, B., Kazarinof, D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  37. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  38. Hilker, F.M., Langlais, M., Petrovskii, S.V., Malchow, H.: A diffusive SI model with Allee effect and application to FIV. Math. Biosci. 206, 61–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hilker, F.M., Langlais, M., Malchow, H.: The allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat. 173, 72–88 (2009)

    Article  Google Scholar 

  40. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  41. Huisman, J., Weissing, F.J.: Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999)

    Article  Google Scholar 

  42. Jacobs, J.: Cooperation, optimal density and low density thresholds: yet another modification of the logistic model. Oecologia 64, 389–395 (1984)

    Article  Google Scholar 

  43. Jang, S.R.J.: Allee effects in a discrete-time host-parasitoid model. J. Differ. Equ. Appl. 12, 165–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kang, Y., Sasmal, S.K., Bhowmick, A.R., Chattopadhyay, J.: Dynamics of a predator–prey system with prey subject to Allee effects and disease. Math. Biosci. Eng. 11(4), 877–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kang, Y., Sasmal, S.K., Bhowmick, A.R., Chattopadhyay, J.: A host-parasitoid system with predation-driven component Allee effects in host population. J. Biol. Dyn. 9, 213–232 (2015)

  46. Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  47. Kuussaari, M., et al.: Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82, 384–392 (1998)

    Article  Google Scholar 

  48. Lafferty, K.D., Morris, A.K.: Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)

    Article  Google Scholar 

  49. Leonel, R.J., Prunaret, D.F., Taha, A.K.: Big bang bifurcations and Allee effect in blumbergs dynamics. Nonlinear Dyn. 77(4), 1749–1771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liao, M.X., Tang, X.H., Xu, C.J.: Dynamics of a competitive Lotka–Volterra system with three delays. Appl. Math. Comput. 217, 10024–10034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liao, M.X., Tang, X.H., Xu, C.J.: Bifurcation analysis for a three-species predator–prey system with two delays. Commun. Nonlinear Sci. Numer. Simul. 17, 183–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu, Z., Yuan, R.: Stability and bifurcation in a delayed predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 296, 521–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lamont, B., Klinkhamer, P., Witkowski, E.: Population fragmentation may reduce fertility to zero in Banksia goodii-demonstration of the Allee effect. Oecologia 94, 446–450 (1993)

    Article  Google Scholar 

  54. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  55. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  56. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  57. Morozov, A., Petrovskii, S., Li, B.L.: Bifurcations and chaos in a predator–prey system with the allee effect. Proc. R. Soc. B 271, 1407–1414 (2004)

    Article  Google Scholar 

  58. Mukandavire, Z., Garira, W., Chiyaka, C.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330(2), 916–933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. NERC: The global population dynamics database version 2. Centre for population biology, Imperial College. http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html (2010)

  60. Pablo, A.: A general class of predation models with multiplicative allee effect. Nonlinear Dyn. 78(1), 629–648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Pal, P.J., Saha, T., Sen, M., Banerjee, M.: A delayed predator–prey model with strong Allee effect in prey population growth. Nonlinear Dyn. 68, 23–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Peng, F., Kang, Y.: Dynamics of a modified lesliegower model with double allee effects. Nonlinear Dyn. 80, 1051–1062 (2015)

    Article  MATH  Google Scholar 

  63. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  64. Rocha, J.L., Fournier-Prunaret, D., Taha, A.K.: Strong and weak Allee effects and chaotic dynamics in Richards’ growths. Discrete Contin. Dyn. Syst. Ser. B 18(9), 2397–2425 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Rocha, J.L., Fournier-Prunaret, D., Taha, A.K.: Big bang bifurcations and allee effect in blumbergs dynamics. Nonlinear Dyn. 77(4), 1749–1771 (2014)

  66. Saha, B., Bhowmick, A.R., Chattopadhyay, J., Bhattacharya, S.: On the evidence of an Allee effect in herring populations and consequences for population survival: a model-based study. Ecol. Model. 250, 72–80 (2013)

    Article  Google Scholar 

  67. Sarwardi, S., Haque, M., Mandal, P.K.: Ratio-dependent predator–prey model of interacting population with delay effect. Nonlinear Dyn. 69, 817–836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sasmal, S.K., Chattopadhyay, J.: An eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 246, 260–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sasmal, S.K., Bhowmick, A.R., Al-Khaled, K., Bhattacharya, S., Chattopadhyay, J.: Interplay of functional responses and weak Allee effect on pest control via viral infection or natural predator: an eco-epidemiological study. Differ. Equ.Dyn. Syst. 24(1), 21–50 (2016)

  70. Sasmal, S.K., Kang, Y., Chattopadhyay, J.: Intra-specific competition in predator can promote the coexistence of an eco-epidemiological model with strong Allee effects in prey. BioSyst. 137, 34–44 (2015)

    Article  Google Scholar 

  71. Schreiber, S.J.: Allee effects, extinctions, and chaotic transients in simple population models. Theor. Popul. Biol. 64, 201–209 (2003)

    Article  MATH  Google Scholar 

  72. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Song, Y., Han, M.: Stability and Hopf bifurcation in a competitive Lokta-Volterra system with two delays. Chaos Solitons Fractals 22, 1139–1148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366, 397–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sun, C., Loreau, M.: Dynamics of a three-species food chain model with adaptive traits. Chaos Solitons Fractals 41(5), 2812–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sun, C., Han, M., Lin, Y.: Analysis of stability and Hopf-bifurcation for a delayed logistic equation. Chaos Solitons Fractals 31(3), 672–682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sun, C., Han, M., Lin, Y., Chen, Y.: Global qualitative analysis for a predator–prey system with delay. Chaos Solitons Fractals 32(4), 1582–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sun, K., Liu, X., Zhu, C., Sprott, J.C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified lorenz system. Nonlinear Dyn. 69, 1383–1391 (2012)

  80. Sther, B.-E., Ringsby, T., Rskaft, E.: Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms. Oikos 77, 217–226 (1996)

    Article  Google Scholar 

  81. Stephens, P., Sutherland, W.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999)

    Article  Google Scholar 

  82. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  83. Stoner, Allan W., Ray-Culp, Melody: Evidence for Allee effects in an over-harvested marine gastropod: density-dependent mating and egg production. Mar. Ecol. Prog. Ser. 202, 297–302 (2000)

    Article  Google Scholar 

  84. Tang, X., Cao, D., Zou, X.: Global attractivity of positive periodic solution to periodic Lotka–Volterra competition systems with pure delay. J. Differ. Equ. 128(2), 580–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  85. Tang, X.H., Zou, X.: 3/2-type criteria for global attractivity of LotkaVolterra competition system without instantaneous negative feedbacks. J. Differ. Equ. 186(2), 420–439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  86. Tang, X.H., Zou, X.: Global attractivity of non-autonomous Lotka–Volterra competition system without instantaneous negative feedback. J. Differ. Equ. 192(2), 502–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  87. Taylor, A.E., David, C.L.: Introduction to Functional Analysis, vol. 2. Wiley, New York (1958)

    Google Scholar 

  88. Taylor, C., Hastings, A.: Allee effects in biological invasions. Ecol. Lett. 8, 895–908 (2005)

    Article  Google Scholar 

  89. Thieme, H.R., Dhirasakdanon, T., Han, Z., Trevino, R.: Species decline and extinction: synergy of infectious diseases and Allee effect? J. Biol. Dyn. 3, 305–323 (2009)

    Article  MathSciNet  Google Scholar 

  90. Venturino, E.: Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  91. Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator–prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang, M.H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  93. Wang, W., Ma, Z.: Harmless delays for uniform persistence. J. Math. Anal. Appl. 158, 256–268 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wang, J., Shi, J., Wei, J.: Predator–prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  95. Xiao, Y., Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  96. Xu, C., Tang, X., Liao, M., He, X.: Bifurcation analysis in a delayed lotka-volterra predator–prey model with two delays. Nonlinear Dyn. 66, 169–183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  97. Xua, R., Gan, Q., Ma, Z.: Stability and bifurcation analysis on a ratio-dependent predator–prey model with time delay. J. Comput. Appl. Math. 230, 187–203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  98. Yan, J., Zhao, A., Yan, W.: Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect. J. Math. Anal. Appl. 309, 489–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  99. Yakubu, A.A.: Allee effects in a discrete-time SIS epidemic model with infected newborns. J. Differ. Equ. Appl. 13, 341–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  100. Zhang, L., Guo, S.J.: Hopf bifurcation in delayed van der Pol oscillators. Nonlinear Dyn. 71(3), 555–568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. Zhang, X., Zhang, Q.L., Xiang, Z.: Bifurcation analysis of a singular bioeconomic model with Allee effect and two time delays. In: Abstract and Applied Analysis 2014 (2014)

  102. Zhao, T., Kuang, Y., Smith, H.L.: Global existence of periodic solutions in a class of delayed Gause- type predator–prey system. Nonlinear Anal. 28, 1373–1394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

SB’s and MD’s research is supported by the junior research fellowship from the University Grants Commission, Government of India. SS’s research work is supported by NBHM postdoctoral fellowship. JC’s research is partially supported by a DAE project (Ref No. 2/48(4)/2010-R & D II/8870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Chattopadhyay.

Appendix

Appendix

1.1 Proof of the Proposition 1:

Proof

The Jacobian matrix of the model (2) at its any equilibrium point \((S_{*}, I_{*}, P_{*})\) is described as follows

$$\begin{aligned}&J\vert _{\left( S_*,I_*,P_*\right) }\nonumber \\&\quad =\left[ \begin{array}{lll} S_*(1-2S_*-I_*+\theta ) &{}\quad \! (\theta -S_*-\beta )S_* &{}\quad \! 0 \\ \beta I_* &{}\quad \! \beta S_*-aP_*-\mu &{}\quad \! -aI_* \\ 0 &{}\quad \! \alpha P_* &{}\quad \! \alpha I_*-d \end{array} \right] \nonumber \\ \end{aligned}$$
(23)

After substituting \(E_i = \left( S^*,I^*,P^*\right) ,~ i~=~0,~\theta ,~1,~2\) into (23), we obtain the eigenvalues for each equilibrium:

  1. 1.

    \(E_0 = \left( 0, 0, 0\right) \) is always locally asymptotically stable since eigenvalues associated with (23) at \(E_0\) can be presented as follows:

    $$\begin{aligned} \lambda _1= & {} -\theta ~~ \left( <0\right) ,\quad \lambda _2 = -\mu ~~ (<0) \quad \hbox {and}\\ \lambda _3= & {} -d~~ (<0). \end{aligned}$$
  2. 2.

    \(E_\theta = \left( \theta , 0, 0\right) \) is always unstable since eigenvalues associated with (23) at \(E_1\) are given by,

    $$\begin{aligned} \lambda _1= & {} \theta (1-\theta ) ~~(>0),\\ \lambda _2= & {} \beta \theta -\mu \biggl \{^{<0\quad \text{ if } \beta \theta <\mu }_{>0\quad \text{ if } \beta \theta >\mu }\quad \text{ and } \lambda _3 = -d \left( <0\right) . \end{aligned}$$
  3. 3.

    \(E_1 = \left( 1, 0, 0\right) \) is locally asymptotically stable if \(\beta < \mu \) since eigenvalues associated with (23) at \(E_1\) are given by,

    $$\begin{aligned} \lambda _1= & {} \theta -1 ~~(<0),\\ \lambda _2= & {} \beta -\mu \biggl \{^{<0\quad \text{ if } \beta <\mu }_{>0\quad \text{ if } \beta >\mu }~~~~ \text{ and } \lambda _3 = -d \left( <0\right) . \end{aligned}$$
  4. 4.

    \(E_{2} = \left( \frac{\mu }{\beta }, \frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta },0\right) \) is locally asymptotically stable if \(\alpha \frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta } -d<0\) and \(1<\frac{\beta }{\mu }<\min \Bigg \{\frac{1}{\theta },\frac{\beta -\theta +\sqrt{\beta ^2-\beta \theta +\beta }}{\beta +\beta \theta -\theta ^2}\Bigg \}\). Since the eigenvalues associated with (23) at \(E_{2}\) are given by

    $$\begin{aligned} \lambda _3= & {} \alpha \frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta }\\&-d\biggl \{^{<0\quad \text{ if } \alpha \frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta } -d<0}_{>0\quad \text{ if } \alpha \frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta } -d>0} \end{aligned}$$

    and the other two eigenvalues are the roots of the equation

    $$\begin{aligned} \lambda ^2 - A\lambda +B = 0. \end{aligned}$$

    Where

    $$\begin{aligned} \begin{array}{lll} A &{}=&{} \frac{\mu }{\beta }\left( 1-2\frac{\mu }{\beta }-\frac{\left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) }{\frac{\mu }{\beta }+\beta -\theta }+\theta \right) \\ &{}=&{} \frac{\left( \beta +\beta \theta -\theta ^2\right) \left( \frac{\beta }{\mu }\right) ^2-2\frac{\beta }{\mu }(\beta -\theta )-1}{\left( \frac{\beta }{\mu }\right) ^2\left( 1+\frac{\beta }{\mu }(\beta -\theta )\right) }\\ B &{}=&{} \mu \left( \frac{\mu }{\beta }-\theta \right) \left( 1-\frac{\mu }{\beta }\right) >0 \end{array} \end{aligned}$$
    (24)

    Thus, we have

    $$\begin{aligned}&A>0\quad \text{ if } \frac{\beta }{\mu }>\frac{\beta -\theta +\sqrt{\beta ^2-\beta \theta +\beta }}{\beta +\beta \theta -\theta ^2} \text{ while } \\&A<0\quad \text{ if } \frac{\beta }{\mu }<\frac{\beta -\theta +\sqrt{\beta ^2-\beta \theta +\beta }}{\beta +\beta \theta -\theta ^2}. \end{aligned}$$

    Therefore, \(E_2\) exists and is locally asymptotically stable if

    $$\begin{aligned} 1<\frac{\beta }{\mu }<\min \Bigg \{\frac{1}{\theta },\frac{\beta -\theta +\sqrt{\beta ^2-\beta \theta +\beta }}{\beta +\beta \theta -\theta ^2}\Bigg \} \end{aligned}$$

Again, the Jacobian matrix of the model (2) at its interior equilibrium point \(\widetilde{E} = (\widetilde{S}, \widetilde{I}, \widetilde{P})\) can be written as follows

$$\begin{aligned}&J\vert _{\widetilde{E} \,\,=\,\, (\widetilde{S}, \widetilde{I}, \widetilde{P})}\nonumber \\&\quad =\left[ \begin{array}{lll} \widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S}) &{}\quad \widetilde{S}(\theta -\beta -\widetilde{S}) &{}\quad 0 \\ \\ \beta \widetilde{I} &{}\quad 0 &{}\quad -a\widetilde{I} \\ \\ 0&{}\quad \alpha \widetilde{P} &{}\quad 0\\ \end{array} \right] \nonumber \\ \end{aligned}$$
(25)

where its characteristic equation reads as follows:

$$\begin{aligned}&\lambda ^3 - \widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S})\lambda ^2\nonumber \\&\qquad +\,\left\{ \beta \widetilde{I} \widetilde{S}(-\theta +\beta +\widetilde{S}) +a\widetilde{I}\alpha \widetilde{P} \right\} \lambda \nonumber \\&\qquad -\,a\alpha \widetilde{I}\widetilde{P}\widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S})\nonumber \\&\quad =\left( \lambda _1-\lambda \right) \left( \lambda _2-\lambda \right) \left( \lambda _3-\lambda \right) = 0. \end{aligned}$$
(26)

with \(\lambda _i, i = 1,2,3\) being roots of (26). If all the real parts of \(\lambda _i, i=1,2,3\) are negative, then we have

$$\begin{aligned}&\sum \nolimits ^3_{i=1}\lambda _i = \widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S}) < 0 \\&\sum \nolimits ^3_{i,j=1,i\ne j}\lambda _i\lambda _j = \beta \widetilde{I} \widetilde{S}(-\theta +\beta +\widetilde{S}) +a\widetilde{I}\alpha \widetilde{P} > 0 \\&\prod ^3_{i=1}\lambda _i = a\alpha \widetilde{I}\widetilde{P}\widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S}) < 0 \end{aligned}$$

Thus, interior equilibrium is locally asymptotically stable if the following conditions hold

$$\begin{aligned}&\widetilde{S}(1+\theta -\widetilde{I}-2\widetilde{S}) < 0\nonumber \\&\frac{1+\theta -\widetilde{I}}{2}<\widetilde{S} \end{aligned}$$
(27)

So, from (27), we see that \(E_2^*\) is stable and \(E_1^*\) is unstable.

1.2 Proof of the permanence of the model (1)

Proof

In this section, we shall prove that the boundary planes of \({\mathbb {R}}^{3}_{+}\) repel the positive solutions of system (1) uniformly. Let us define

$$\begin{aligned} C_{1}= & {} \Bigg \{\left( \psi _{1}, \psi _{2}, \psi _{3}\right) \in C\left( \left[ -\tau , 0\right] ,{\mathbb {R}}^{3}_{+}\right) {:}\\&\quad \psi _{1}( \phi ) = 0,~ \phi \in [-\tau , 0]\Bigg \}, \\ C_{2}= & {} \Bigg \{\left( \psi _{1}, \psi _{2}, \psi _{3}\right) \in C\left( \left[ -\tau , 0\right] ,{\mathbb {R}}^{3}_{+} \right) {:}\\&\quad \psi _{2}( \phi ) = 0,~ \psi _{1}( \phi )\ne 0,~ \phi \in [-\tau , 0]\Bigg \}, \\ C_{3}= & {} \Bigg \{\left( \psi _{1}, \psi _{2}, \psi _{3}\right) \in C\left( \left[ -\tau , 0\right] ,{\mathbb {R}}^{3}_{+} \right) {:}\\&\quad \psi _{3}( \phi ) = 0,~ \psi _{1}( \phi ) \psi _{2}( \phi )\ne 0,~ \phi \in [-\tau , 0]\Bigg \}, \end{aligned}$$

where \(C([-\tau , 0],~{\mathbb {R}}^{3}_{+})\) denote the space of continuous function mapping \([-\tau , 0]\) in to \({\mathbb {R}}^{3}_{+}\).

If \(C_{0} = C_{1}\cup C_{2}\cup C_{3}\) and \(C^{0} = int C\left( [-\tau , 0], {\mathbb {R}}^{3}_{+}\right) \), it suffices to show that there exists an \(\epsilon _{0} >0 \) such that for any solution \(u_{t}\) of system (1) initiating from \(C_{0}\), \(\displaystyle {\lim _{t\rightarrow \infty }\inf \ d(u_{t}, C_{0} )\ge \epsilon _{0}}\).

Now, we verify below that the conditions of Lemma 1 are satisfied. By definition of \(C_{0}\) and \(C^{0}\) and system (1), it is easy to see that \(C_{0}\) and \(C^{0}\) are positively invariant. Moreover, it is clear that conditions (i) and (ii) of Lemma 1 are satisfied. Thus, we need to confirm conditions (iii) and (iv).

Three constant solutions in \(C_{0}\) corresponding to \(\left( S(t) = 0, I(t) = 0, P(t) = 0\right) \), \(\left( S(t)=1, I(t)=0, P(t)=0\right) \) and \(\left( S(t) = S_{2}, I(t) = I_{2}, P(t) = 0\right) \) are respectively \(E_{0}\), \(E_{1}\) and \(E_{2}\).

If \(\left( S(t), I(t), P(t)\right) \) is any solution of system (1) initiating from \(C_{1}\) with \(\psi _{1}(0) = 0\) then \(S(t)\rightarrow 0\), \(I(t)\rightarrow 0\), \(P(t)\rightarrow 0\) as \(t\rightarrow \infty \). If \(\left( S(t), I(t), P(t)\right) \) is a solution of system (1) initiating from \(C_{2}\) with \(\psi _{1}(0) > 0\), it follows that \(S(t)\rightarrow 1\), \(I(t)\rightarrow 0\), \(P(t)\rightarrow 0\) as \(t\rightarrow \infty \). If \(\left( S(t), I(t), P(t)\right) \) is a solution of system (1) initiating from \(C_{3}\) with \(\psi _{1}(0) \psi _{2}(0) > 0\), it follows that \(S(t)\rightarrow S_{2}\), \(I(t)\rightarrow I_{2}\), \(P(t)\rightarrow 0\) as \(t\rightarrow \infty \).

This shows that invariant sets \(E_{0}\), \(E_{1}\) and \(E_{2}\) are isolated invariant, and then, \(E_{0}\), \(E_{1}\) and \(E_{2}\) are an isolated as well as an acyclic covering, satisfying condition (iii) of Lemma 1.

We now show that \(W^{s}(E_{0}) \cap C^{0} = {\varPhi }\), \(W^{s}(E_{1}) \cap C^{0} = {\varPhi }\) and \(W^{s}(E_{2}) \cap C^{0} = {\varPhi }\). The proof for the first part is simple, so we ignore it. We shall prove the second part through contradiction. Let us assume that \(W^{s}(E_{1}) \cap C^{0} \ne {\varPhi }\), then there exists a positive solution \(\left( S(t), I(t), P(t)\right) \) of system (1) such that \(\left( S(t), I(t), P(t)\right) \rightarrow (1, 0, 0)\) as \(t\rightarrow +\infty \). Let us choose \(\epsilon _{1} > 0 \) small enough such that

$$\begin{aligned}&\left( 1-\frac{\mu + a\epsilon _1}{\beta }\right) \left( \frac{\mu + a\epsilon _1}{\beta }-\theta \right) >0 \text{ and } \\&\quad -\epsilon _{1} < P(t) < \epsilon _{1} \end{aligned}$$

for some \(t>t_{1}\), where \(t_{1}\) be sufficiently large. Then, from first and second equations of the system (1), we have for \(t>t_{1}\)

$$\begin{aligned} \frac{\hbox {d}S(t)}{\hbox {d}t}\ge & {} S\{(1- S - I)(S- \theta )-\beta I\}, \nonumber \\ \frac{\hbox {d}I(t)}{\hbox {d}t}\ge & {} I\{\beta S -\mu -a\epsilon _1\}. \end{aligned}$$
(28)

Now let us consider

$$\begin{aligned} \frac{\hbox {d}y_1(t)}{\hbox {d}t}\ge & {} y_1\left\{ (1-y_1 -y_2)(y_1-\theta )-\beta y_2\right\} , \nonumber \\ \frac{\hbox {d}y_2(t)}{\hbox {d}t}\ge & {} y_2\left\{ \beta y_1 -\mu -a\epsilon _1\right\} . \end{aligned}$$
(29)

Let \(V = (v_1,v_2)\) and \(\zeta >0\) be small enough such that \(\zeta v_1<S(t_1),\zeta v_2<I(t_1)\). If \(\left( y_1(t),y_2(t)\right) \) is a solution of system (29) satisfying \(y_i(t_1) = \zeta v_i, i = 1, 2\). We know from comparison theorem that \(S(t) > y_1(t),~ I(t) > y_2(t)\) for all \(t>t_1\). We can check easily that the system (29) has a unique positive equilibrium

$$\begin{aligned} \left( y^*_1,y^*_2\right) = \left( \frac{\mu +a\epsilon _1}{\beta }, \frac{\left( 1-\frac{\mu + a\epsilon _1}{\beta }\right) \left( \frac{\mu + a\epsilon _1}{\beta }-\theta \right) }{\frac{\mu + a\epsilon _1}{\beta }-\theta +\beta }\right) . \end{aligned}$$

Now \(S(t) > y_1(t), I(t) > y_2(t)\) for all \(t>t_1\) and \(\displaystyle {\lim _{t\rightarrow \infty } y_2(t)}=y^*_2\). This is a contradiction. Hence, \(W^{s}(E_{2} ) \cap C^{0} = {\varPhi }\).

Let \(W^{s}(E_{2}) \cap C^{0} \ne {\varPhi }\). Then, there exists a positive solution \(\left( S(t), I(t), P(t)\right) \) of the system such that \(\left( S(t), I(t), P(t)\right) \rightarrow (S_{2}, I_{2}, 0)\) as \(t\rightarrow \infty \). Let us choose \(\epsilon _2>0\) small enough such that \(I_2-\epsilon _2 < I(t) < I_2+\epsilon _2\) for \(t > t_2-\tau \).

Then, from third equation of the system (1), we have for \(t > t_{2}-\tau \)

$$\begin{aligned} \frac{\hbox {d} P(t)}{\hbox {d}t} \ge \left( \alpha P(t-\tau )(I_2-\epsilon _2)-dP\right) . \end{aligned}$$
(30)

Now, let us consider

$$\begin{aligned} \frac{\hbox {d} z(t)}{\hbox {d}t} \ge \left( \alpha z(t-\tau )(I_2-\epsilon _2)-dz\right) . \end{aligned}$$
(31)

Let \(u_{1}\) and \(v>0\) be small enough such that \(vu_{1}<P(t_{2})\). If \(z_{1}\) is a solution of system (31) satisfying \(z_{1}(t_{2})=wu_{1}\), we know from comparison theorem, \(P(t)\ge z_{1}(t)\) for all \(t >t_{2}-\tau \). We also observe that the solution \(z_{1}\) of Eq. (31) satisfies \(\displaystyle {\lim _{t\rightarrow \infty } z_{1}(t)} \rightarrow +\infty \) (from condition (ii)).

Since \(P(t)\ge z_{1}(t)\) for all \( t >t_{2} \), so \(\displaystyle {\lim _{t\rightarrow \infty } P(t)}\nrightarrow 0\). This contradicts that \(W^{s}(E_{2} ) \cap C^{0} = {\varPhi }\). From Lemma 1, we conclude that \(C_{0}\) repels the positive solutions of (1) uniformly. Hence, the system (1) is permanent. This proves the theorem.

1.3 Direction and stability of Hopf bifurcation of model (1)

We consider the transformation \(z_{1}(t) = S(\tau t)-S_{*}\), \(z_{2}(t) = I(\tau t)-I_{*}\), \(z_{3}(t) = P(\tau t)-P_{*}\).

Let \(\tau =\tau ^{*}+\mu \), \(\mu \in \mathbf {R}\). Then, \(\mu =0\) is the Hopf bifurcation value of the system (1). The Eq. (1) can be written in the form

$$\begin{aligned} \dot{z}(t)=L_{\mu }(z_{t})+F(\mu , z_{t}), \end{aligned}$$
(32)

where \(z(t)=(z_{1}(t), z_{2}(t), z_{3}(t))^{T}\in \mathbf {R^{3}}\). For \(\psi =(\psi _{1}, \psi _{2}, \psi _{3})^{T}\in \mathbf {C}([-1, 0], \mathbf {R^{3}_{+}})\); \(L_{\mu }: \mathbf {C}\rightarrow \mathbf {R}\) and \(F: \mathbf {R}\times \mathbf {C}\rightarrow \mathbf {R}\) are given by

$$\begin{aligned} L_{\mu }(\psi )= & {} (\tau ^{*}+\mu )A_3 \left( \begin{array}{c} \psi _{1}(0) \\ \psi _{2}(0) \\ \psi _{3}(0) \\ \end{array} \right) \nonumber \\&+\,(\tau ^{*}+\mu )A_4 \left( \begin{array}{c} \psi _{1}(-1) \\ \psi _{2}(-1) \\ \psi _{3}(-1) \\ \end{array} \right) , \end{aligned}$$
(33)

and

$$\begin{aligned} F(\mu , \psi )=(\tau ^{*}+\mu ) A_5, \end{aligned}$$
(34)

where

$$\begin{aligned} A_3= & {} \left( \begin{array}{lll} 2S_* (1+\theta )-\theta -3S_{*}^2+I_* (\theta -\beta -2I_*) &{}\quad -S_* (S_* -\theta )-\beta S_* &{}\quad 0 \\ \beta I_* &{}\quad \beta S_* -a P_* -\mu &{}\quad -aI_* \\ 0 &{}\quad 0 &{}\quad -d\\ \end{array} \right) ,\\ A_4= & {} \left( \begin{array}{ccc} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} \alpha P_* &{} \alpha I_* \\ \end{array} \right) ,\\ A_5= & {} \left( \begin{array}{c} (1+\theta -3S_*)\psi _{1}^{2}(0)+(\theta -\beta - 2S_* ) \psi _{1}(0)\psi _{2}(0) \\ \beta \psi _{1}(0)\psi _{2}(0)- a \psi _{2}(0)\psi _{3}(0) \\ \alpha \psi _{2}(-1)\psi _{3}(-1) \\ \end{array} \right) . \end{aligned}$$

By the Riesz representation theorem [87], there exists a function \(\eta (\theta , \mu )\) of bounded variation for \(\theta \in [-1, 0]\), such that

$$\begin{aligned} L_{\mu }\psi =\int _{-1}^{0} \hbox {d}\eta (\theta , \mu )\psi (\theta ), \ \ \ \ \text{ for } \ \ \psi \in \mathbf {C}. \end{aligned}$$
(35)

In fact, we can choose

$$\begin{aligned} \eta (\theta , \mu )= & {} (\tau ^{*}+\mu )\left( \begin{array}{lll} 2S_* (1+\theta )-\theta -3S_{*}^2+I_* (\theta -\beta -2I_*) &{}\quad -S_* (S_* -\theta )-\beta S_* &{}\quad 0 \\ \beta I_* &{}\quad \beta S_* -a P_* -\mu &{}\quad -aI_* \\ 0 &{}\quad 0 &{}\quad -d\\ \end{array} \right) \delta (\theta ) \nonumber \\&-(\tau ^{*}+\mu ) \left( \begin{array}{lll} 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \alpha P_* &{}\quad \alpha I_* \\ \end{array} \right) \delta (\theta +1), \end{aligned}$$
(36)

where \(\delta \) is defined by \(\delta (\theta )=\Big \{^{1, \ \ \theta =0,}_{0, \ \ \theta \ne 0.} \)

For \(\psi \in \mathbf {C}^{1}\left( [-1, 0], \mathbf {R^{3}_{+}}\right) \), define

$$\begin{aligned} A(\mu )\psi =\left\{ \begin{array}{ll} \frac{\hbox {d}\psi (\theta )}{\hbox {d}\theta } &{} \quad \theta \in [-1, 0) \\ \displaystyle \int _{-1}^{0} \hbox {d}\eta (\mu , s)\psi (s)&{}\quad \theta =0 \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} R(\mu )\psi =\left\{ \begin{array}{c} 0, \quad \theta \in [-1, 0), \\ F(\mu , \psi ), \quad \theta =0. \end{array} \right. \end{aligned}$$

Then, the system (32) is of the form

$$\begin{aligned} \dot{z_{t}}=A(\mu )z_{t}+R(\mu )z_{t}, \end{aligned}$$
(37)

where \(z_{t}(\theta )=z_{t}(t+\theta )\) for \(\theta \in [-1, 0]\).

For \(\phi \in \mathbf {C}^{1}([0, 1], (\mathbf {R^{3}_{+}})^{*})\), define

$$\begin{aligned} A^{*}\phi (s)=\left\{ \begin{array}{ll} -\frac{\hbox {d}\phi (s)}{\hbox {d}s}, &{}\quad s \in (0, 1], \\ \\ {\displaystyle \int _{-1}^{0}}\hbox {d}\eta ^{T}(t, 0)\phi (-t), &{}\quad s=0, \end{array} \right. \end{aligned}$$

and a bilinear inner product

$$\begin{aligned}&\langle \phi (s), \psi (\theta )\rangle =\overline{\phi }(0)\psi (0)\nonumber \\&\quad -\,\int _{-1}^{0}\int _{\alpha =0}^{\theta }\overline{\phi }(\alpha -\theta )\hbox {d}\eta (\theta )\psi (\alpha )\hbox {d}\alpha , \end{aligned}$$
(38)

where \(\eta (\theta )=\eta (\theta , 0)\). Clearly, A(0) and \(A^{*}\) are adjoint operators. We know that \(\pm i\rho _{0}\tau ^{*}\) are eigenvalues of A(0). So, they are also eigenvalues of \(A^{*}\). Now we search for the eigenvector of A(0) and \(A^{*}\) corresponding to \(i\rho _{0}\tau ^{*}\) and \(-i\rho _{0}\tau ^{*}\) respectively.

We assume that \(q(\theta )=(1, u, w)^{T} e^{i\rho _{0}\tau ^{*}\theta }\) and \(q^{*}(s)\) are the eigenvectors of A(0) and \(A^{*}\) corresponding to \(i\rho _{0}\tau ^{*}\) and \(-i\rho _{0}\tau ^{*}\), respectively. Then, we have \(A(0)q(\theta )=i\rho _{0}\tau ^{*}q(\theta )\). By the definition of A(0) and from (35) and (36), it follows that

$$\begin{aligned}&\tau ^{*}\left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) +i\rho _{0} &{}\quad +S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu +i\rho _{0} &{}\quad aI_* \\ 0 &{}\quad -\alpha P_* e^{-i\rho _{0}\tau ^{*}} &{}\quad -\alpha I_* e^{-i\rho _{0}\tau ^{*}} +d +i\rho _{0}\\ \end{array} \right) q(0)\\&\quad =\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{aligned}$$

Then, we can get \(q(0)=(1, u, w)^{T}\),

where

$$\begin{aligned} u= & {} -\frac{-2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) \,+\,i\rho _{0}}{S_* (S_* -\theta )+\beta S_*}, \nonumber \\ w= & {} -\frac{-2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) \,+\,i\rho _{0}}{S_* (S_* -\theta )+\beta S_*}\nonumber \\&\times \frac{\alpha P_* e^{-i\rho _{0}\tau ^{*}}}{-\alpha I_* e^{-i\rho _{0}\tau ^{*}} \,+\,d \,+\,i\rho _{0}}. \end{aligned}$$
(39)

Similarly, we can obtain

$$\begin{aligned}&q^{*}(s) = D\left( 1, u^{*}, w^{*}\right) ^{T} e^{i\rho _{0}\tau ^{*}s}, \\&\quad = D e^{i\rho _{0}\tau ^{*}s}\left( 1,\frac{-2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) -i\rho _{0}}{\beta I_*}, \right. \\&\qquad \left. -\,\frac{aI_*}{-\alpha I_* e^{-i\rho _{0}\tau ^{*}} +d -i\rho _{0}}\right. \\&\qquad \times \left. \frac{-2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) -i\rho _{0}}{\beta I_*}\right) . \end{aligned}$$

We choose D in such a way that \(\langle q^{*}(s), q(\theta ) \rangle =1\), \(\langle q^{*}(s), \overline{q}(\theta ) \rangle =0\).

Hence

$$\begin{aligned}&\langle q^{*}(s), q(\theta ) \rangle \\&\quad = \overline{D}(1, \overline{u^{*}}, \overline{w^{*}})(1, u, w)^{T} \\&\qquad - \,\int _{-1}^{0}\int _{\zeta =0}^{\theta }\overline{D}(1, \overline{u^{*}},\overline{w^{*}})e^{-i\rho _{0}\tau ^{*}(\zeta -\theta )}\hbox {d}\eta (\theta ) \\&\qquad (1, u, w)^{T}e^{i\rho _{0}\tau ^{*}\zeta } \hbox {d}\zeta \\&\quad = \overline{D}\left[ 1+\overline{u^{*}}u+\overline{w^{*}}w \right. \\&\qquad \left. -\,\int _{-1}^{0}(1, \overline{u^{*}} ,\overline{w^{*}})\theta e^{i\rho _{0}\tau ^{*}\theta } \hbox {d}\eta (\theta )(1, u, w)^{T} \right] \\&\quad = \overline{D}\left[ 1+\overline{u^{*}}u \right. \\&\qquad \left. +\,\overline{w^{*}}w+ \tau ^{*} w \alpha (\overline{u^{*}}P_*+\overline{w^{*}}I_*) e^{-i\rho _{0}\tau ^{*}} \right] . \end{aligned}$$

Thus, we can choose D as \(D=\frac{1}{1+\overline{u}u^{*}+\overline{w}w^{*}+ \tau ^{*} \overline{w} \alpha (u^{*}P_*+ w^{*}I_*) e^{i\rho _{0}\tau ^{*}}}\).

To describe the center manifold \(\mathbf {C}_{0} \) at \(\mu =0 \), we compute the coordinates by using the same notations and procedures as proposed by Hassard et al. [36].

Let \( z_{t}\) be the solution of of Eq. (32) when \(\mu =0\).

Define

$$\begin{aligned} \text {z}(t)=\langle q^{*}, z_{t}\rangle , \quad W(t,\theta )=z_{t}(\theta )-2\hbox {Re}\{\text {z}(t)q(\theta ) \}. \nonumber \\ \end{aligned}$$
(40)

On the center manifold \(\mathbf {C}_{0} \), we have

$$\begin{aligned} \ \ \ \ W(t, \theta )=W\Bigl (\text {z}(t), \overline{\text {z}}(t), \theta \Bigr ), \end{aligned}$$

where

$$\begin{aligned}&W(\text {z}, \overline{\text {z}}, \theta ) =W_{20}(\theta )\frac{\text {z}^{2}}{2}+ W_{11}(\theta )\text {z}\overline{\text {z}}+W_{02}(\theta )\frac{\overline{\text {z}}^{2}}{2}\\&\quad +\, W_{30}(\theta ) \frac{\text {z}^{3}}{6}+\cdots , \end{aligned}$$

\(\text {z}\) and \(\overline{\text {z}}\) are local coordinates for center manifold \(\mathbf {C}_{0}\) in the direction of \(q^{*}\) and \(\overline{q}^{*}\). Here W is real when \(z_{t}\) is real. Now, we consider only real solutions. For solution \(z_{t} \in \mathbf {C}_{0}\) of Eq. (32), since \(\mu =0\), we can obtain

$$\begin{aligned} \dot{\text {z}}(t)= & {} i\rho _{0}\tau ^{*}\text {z} \\&+\, \Bigl \langle \overline{q}^{*}(\theta ), F\Bigl (0, W(\text {z}, \overline{\text {z}},\theta )+2\hbox {Re}\{\text {z}q(\theta )\} \Bigr ) \Bigr \rangle \\= & {} i\rho _{0}\tau ^{*}\text {z}+\overline{q}^{*}(0)F\Bigl (0, W(\text {z}, \overline{\text {z}},0) \\&+\,2\hbox {Re}\left\{ \text {z}q(0)\right\} \Bigr ) \mathop {=}\limits ^{\text {def}} i\rho _{0}\tau ^{*}\text {z}+\overline{q}^{*}(0)F_{0}(\text {z}, \overline{\text {z}}); \end{aligned}$$

we rewrite this equation as \(\dot{\text {z}}=i\rho _{0}\tau ^{*}\text {z}+g(\text {z}, \overline{\text {z}})\) with

$$\begin{aligned} g(\text {z}, \overline{\text {z}})= & {} \overline{q}^{*}(0)F_{0}(\text {z}, \overline{\text {z}})=g_{20}\frac{\text {z}^{2}}{2}+ g_{11}\text {z}\overline{\text {z}}+g_{02}\frac{\overline{\text {z}}^{2}}{2}\nonumber \\&+\, g_{21} \frac{\text {z}^{2}\overline{\text {z}}}{2}+\cdots . \end{aligned}$$
(41)

Then, from Eq. (40), we have

$$\begin{aligned} z_{t}(\theta )= & {} (z_{1t}(\theta ), z_{2t}(\theta ), z_{3t}(\theta ))\nonumber \\= & {} W(t,\theta )+2\hbox {Re}\left\{ \text {z}(t)q(\theta ) \right\} \nonumber \\= & {} W_{20}(\theta )\frac{\text {z}^{2}}{2}+ W_{11}(\theta )\text {z}\overline{\text {z}} +W_{02}(\theta )\frac{\overline{\text {z}}^{2}}{2}\nonumber \\&+\,(1, u, w)^{T} e^{i\rho _{0}\tau ^{*}\theta } \text {z}+ (1, \overline{u}, \overline{w})^{T} e^{-i\rho _{0}\tau ^{*}\theta } \overline{\text {z}} \nonumber \\&+\,O\left( {\mid }(\text {z}, \overline{\text {z}}){\mid }^{3}\right) . \end{aligned}$$
(42)

Thus, from Eq. (41), we can get

$$\begin{aligned}&g\left( \text {z}, \overline{\text {z}}\right) =\overline{q}^{*}\left( 0\right) F_{0}\left( \text {z}, \overline{\text {z}}\right) \nonumber \\&\quad =\overline{D}\left( 1, \overline{u^{*}}, \overline{w^{*}}\right) \tau ^{*}\nonumber \\&\qquad \left( \begin{array}{c} -\left( 3S_*-1-\theta \right) z_{1t}^{2}\left( 0\right) -\left( \beta +2S_*-\theta \right) z_{1t}\left( 0\right) z_{2t}\left( 0\right) \\ \beta z_{1t}\left( 0\right) z_{2t}\left( 0\right) -a z_{2t}\left( 0\right) z_{3t}\left( 0\right) \\ \alpha z_{2t}\left( -1\right) z_{3t}\left( -1\right) \\ \end{array} \right) \nonumber \\&\quad = -\overline{D}\tau ^{*} \left[ \left( 3S_*-1-\theta \right) \left\{ z+\overline{z} \right. \right. \nonumber \\&\qquad +\,W_{20}^{1}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{1}\left( 0\right) \text {z}\overline{\text {z}}\nonumber \\&\qquad \left. +\,W_{02}^{1}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} ^{2} \nonumber \\&\qquad + \,\left( \beta +2S_*-\theta \right) \left\{ z+\overline{z}+W_{20}^{1}\left( 0\right) \frac{\text {z}^{2}}{2} \right. \nonumber \\&\qquad \left. +\, W_{11}^{1}\left( 0\right) \text {z}\overline{\text {z}} +W_{02}^{1}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \nonumber \\&\qquad \times \,\left\{ uz+ \overline{u} \ \overline{z} +W_{20}^{2}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{2}\left( 0\right) \text {z}\overline{\text {z}} \right. \nonumber \\&\qquad \left. \left. +\,W_{02}^{2}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \right] \nonumber \\&\qquad +\, \overline{D}\tau ^{*}\overline{u^{*}} \left[ \left\{ \beta \left( z+\overline{z}+W_{20}^{1}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{1}\left( 0\right) \text {z}\overline{\text {z}} \right. \right. \right. \nonumber \\&\qquad \left. \left. +\,W_{02}^{1}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right) \right\} \nonumber \\&\qquad \times \,\left\{ uz+ \overline{u} \ \overline{z}+W_{20}^{2}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{2}\left( 0\right) \text {z}\overline{\text {z}} \right. \nonumber \\&\qquad \left. +\,W_{02}^{2}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \nonumber \\&\qquad -\,a\left\{ uz+ \overline{u} \ \overline{z}+W_{20}^{2}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{2}\left( 0\right) \text {z}\overline{\text {z}} \right. \nonumber \\&\qquad \left. +\,W_{02}^{2}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \nonumber \\&\qquad \times \,\left\{ wz+ \overline{w}\ \overline{z}+W_{20}^{3}\left( 0\right) \frac{\text {z}^{2}}{2}+ W_{11}^{3}\left( 0\right) \text {z}\overline{\text {z}} \right. \nonumber \\&\qquad \left. \left. +\,W_{02}^{3}\left( 0\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \right] \nonumber \\&\qquad +\,\overline{D}\tau ^{*} \overline{w^{*}}\alpha \left\{ wz e^{-i\rho _{0}\tau ^{*}}+ \overline{w} \ \overline{z} e^{i\rho _{0}\tau ^{*}}+W_{20}^{3}\left( -1\right) \frac{\text {z}^{2}}{2} \right. \nonumber \\&\qquad \left. +\, W_{11}^{3}\left( -1\right) \text {z}\overline{\text {z}} +W_{02}^{3}\left( -1\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \nonumber \\&\qquad \times \, \left\{ uz e^{-i\rho _{0}\tau ^{*}}+ \overline{u} \ \overline{z} e^{i\rho _{0}\tau ^{*}}+W_{20}^{2}\left( -1\right) \frac{\text {z}^{2}}{2}\right. \nonumber \\&\qquad \left. +\, W_{11}^{2}\left( -1\right) \text {z}\overline{\text {z}} +W_{02}^{2}\left( -1\right) \frac{\overline{\text {z}}^{2}}{2}+O\left( {\mid }\left( \text {z}, \overline{\text {z}}\right) {\mid }^{3}\right) \right\} \end{aligned}$$
(43)

Comparing with the coefficients with (41), we can obtain

$$\begin{aligned} g_{20}= & {} 2\overline{D}\tau ^{*}\left[ -\{(3S_*-1-\theta )+u(2S_*+\beta -\theta )\}\right. \nonumber \\&\left. +\,u\overline{u^{*}}(\beta -aw)+\alpha uw\overline{w^{*}}e^{-2i\rho _{0}\tau ^{*}}\right] ,\nonumber \\ g_{11}= & {} 2\overline{D}\tau ^{*}\left[ -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}\right. \nonumber \\&\left. +\,\overline{u^{*}}(\beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\})+\alpha \hbox {Re}\{u\overline{w}\}\overline{w^{*}}\right] ,\nonumber \\ g_{02}= & {} 2\overline{D}\tau ^{*}\left[ -\{(3S_*-1-\theta )+\overline{u}(2S_*+\beta -\theta )\}\right. \nonumber \\&\left. +\,\overline{u}\overline{u^{*}}(\beta -a\overline{w})+\alpha \overline{uw}\overline{w^{*}}e^{2i\rho _{0}\tau ^{*}}\right] ,\nonumber \\ g_{21}= & {} \overline{D}\tau ^{*}\left[ -(2S_*+\beta -\theta )( W_{20}^{2}(0)+ 2W_{11}^{2}(0)\right. \nonumber \\&+\,\overline{u} W_{20}^{1}(0)+ 2uW_{11}^{1}(0))\nonumber \\&-\,2(3S_*-1-\theta ) ( W_{20}^{1}(0)+ 2W_{11}^{1}(0))\nonumber \\&+\,\overline{u^{*}}\{\beta ( 2W_{11}^{2}(0)+W_{20}^{2}(0)+ \overline{u} W_{20}^{1}(0)\nonumber \\&+\, 2uW_{11}^{1}(0)) - a ( 2uW_{11}^{3}(0)\nonumber \\&+\,\overline{u} W_{20}^{3}(0)+\overline{w} W_{20}^{2}(0)+ 2wW_{11}^{2}(0)\} \nonumber \\&+\,\alpha \overline{w^{*}}( 2uW_{11}^{2}(-1)e^{-i\rho _{0}\tau ^{*}}\nonumber \\&+\,\overline{u}W_{20}^{3}(-1)e^{i\rho _{0}\tau ^{*}} + \overline{w}W_{20}^{2}(-1)e^{i\rho _{0}\tau ^{*}}\nonumber \\&\left. +\, 2wW_{11}^{2}(-1)e^{-i\rho _{0}\tau ^{*}})\right] . \end{aligned}$$
(44)

To calculate the value of \(g_{21}\), we need to compute the values of \(W_{20}(\theta )\) and \(W_{11}(\theta )\). From Eqs. (37) and (40), we have

$$\begin{aligned}&\dot{W}=\dot{z}_{t} -\dot{\text {z}}q- \dot{\overline{\text {z}}}\ \overline{q} \nonumber \\&\quad =\left\{ \begin{array}{c} A W- 2\hbox {Re}\{\overline{q}^{*}(0)F_{0}q(\theta ) \}, \quad \theta \in [-1, 0),\\ A W-2\hbox {Re}\{\overline{q}^{*}(0)F_{0}q(\theta )\}+F_{0}, \quad \theta = 0, \end{array} \right. \nonumber \\&\quad \mathop {=}\limits ^{\text {def}} AW+H(\text {z}, \overline{\text {z}}, \theta ), \end{aligned}$$
(45)

where

$$\begin{aligned} H(\text {z}, \overline{\text {z}}, \theta )= & {} H_{20}(\theta )\frac{\text {z}^{2}}{2}+ H_{11}(\theta )\text {z}\overline{\text {z}}\nonumber \\&+H_{02}(\theta )\frac{\overline{\text {z}}^{2}}{2}+ \cdots \ . \end{aligned}$$
(46)

Expanding the above series and comparing the corresponding coefficients, we obtain

$$\begin{aligned} (A-i2\rho _{0}\tau ^{*}I)W_{20}(\theta )= & {} -H_{20}(\theta ),\nonumber \\ AW_{11}(\theta )= & {} -H_{11}(\theta ). \end{aligned}$$
(47)

From Eq. (45), we know that for \(\theta \in [-1, 0),\)

$$\begin{aligned} H(\text {z}, \overline{\text {z}}, \theta )= & {} -\overline{q}^{*}(0)F_{0}q(\theta )-q^{*}(0)\overline{F}_{0}\overline{q}(\theta )\nonumber \\= & {} -g q(\theta )-\overline{g}\ \overline{q}(\theta ). \end{aligned}$$
(48)

Comparing the coefficients with (46) gives that

$$\begin{aligned} H_{20}( \theta )=-g_{20}q(\theta )-\overline{g}_{02} \overline{q}(\theta ) \end{aligned}$$
(49)

and

$$\begin{aligned} H_{11}( \theta )=-g_{11}q(\theta )-\overline{g}_{11} \overline{q}(\theta ). \end{aligned}$$
(50)

From (47) and (49), we have

$$\begin{aligned} \dot{W}_{20}(\theta )=i2\rho _{0}\tau ^{*}W_{20}(\theta )+g_{20}q(\theta )+\overline{g}_{02} \overline{q}(\theta ). \end{aligned}$$

Since \(q(\theta )=(1, u, w)^{T} e^{i\rho _{0}\tau ^{*}\theta }\), hence

$$\begin{aligned} W_{20}(\theta )= & {} \frac{ig^{}_{20}}{\rho _{0}\tau ^{*}} q(0)e^{i\rho _{0}\tau ^{*}\theta }+\frac{i\overline{g}^{}_{20}}{3\rho _{0}\tau ^{*}} \overline{q}(0)e^{-i\rho _{0}\tau ^{*}\theta }\nonumber \\&+\,E_{1}e^{i2\rho _{0}\tau ^{*}\theta }, \end{aligned}$$
(51)

where \(E_{1}=(E_{1}^{(1)}, E_{1}^{(2)}, E_{1}^{(3)}) \in \mathbf {R}^{3}\) is a constant vector.

Similarly, from Eqs. (47) and (50), we get

$$\begin{aligned} W_{11}(\theta )= & {} -\frac{ig^{}_{11}}{\rho _{0}\tau ^{*}} q(0)e^{i\rho _{0}\tau ^{*}\theta }\nonumber \\&+\,\frac{i\overline{g}^{}_{11}}{\rho _{0}\tau ^{*}} \overline{q}(0)e^{-i\rho _{0}\tau ^{*}\theta }+E_{2}, \end{aligned}$$
(52)

where \(E_{2}=(E_{2}^{(1)}, E_{2}^{(2)}, E_{2}^{(3)}) \in \mathbf {R}^{3}\) is a constant vector.

In what follows, we shall seek appropriate \(E_{1}\) and \(E_{2}\) in (51) and (52) respectively. From the definition of A and (47), we obtain

$$\begin{aligned} \int _{-1}^{0}\hbox {d}\eta (\theta )W_{20}(\theta )=i2\rho _{0}\tau ^{*} W_{20}(0)-H_{20}(0) \end{aligned}$$
(53)

and

$$\begin{aligned} \int _{-1}^{0}\hbox {d}\eta (\theta )W_{11}(\theta )=-H_{11}(0), \end{aligned}$$
(54)

where \(\eta (\theta )=\eta (0, \theta )\). From (47), we have

$$\begin{aligned} H_{20}(0)= & {} -g_{02}q(0)-\overline{g}_{02}\overline{q}(0)+2 \tau ^{*}\nonumber \\&\left( \begin{array}{c} -\left\{ (3S_*-1-\theta )+u(2S_*+\beta -\theta )\right\} \\ u(\beta -a w)\\ \alpha uwe^{-2i\rho _{0}\tau ^{*}} \\ \end{array} \right) \nonumber \\ \end{aligned}$$
(55)

and

$$\begin{aligned}&H_{11}(0)=-g_{11}q(0)-\overline{g}_{11}\overline{q}(0)\nonumber \\&\quad +\,2 \tau ^{*}\left( \begin{array}{c} -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}\\ \beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}\\ \alpha \hbox {Re}\{u\overline{w}\}\\ \end{array} \right) . \nonumber \\ \end{aligned}$$
(56)

Noting that

$$\begin{aligned} \left( i\rho _{0}\tau ^{*}I-\int _{-1}^{0}e^{i\rho _{0}\tau ^{*}\theta }\hbox {d}\eta \left( \theta \right) \right) q\left( 0\right) =0, \end{aligned}$$

and

$$\begin{aligned} \left( -i\rho _{0}\tau ^{*}I-\int _{-1}^{0}e^{-i\rho _{0}\tau ^{*}\theta }\hbox {d}\eta \left( \theta \right) \right) \overline{q}\left( 0\right) =0, \end{aligned}$$

and putting (51) and (55) into (53), we get

$$\begin{aligned}&\left( i2\rho _{0}\tau ^{*}I-\int _{-1}^{0}e^{i2\rho _{0}\tau ^{*}\theta }\hbox {d}\eta (\theta )\right) E_{1}\nonumber \\&\quad =2\tau ^{*} \left( \begin{array}{c} -\left\{ (3S_*-1-\theta )+u(2S_*+\beta -\theta )\right\} \\ u(\beta -a w)\\ \alpha uwe^{-2 i\rho _{0}\tau ^{*}} \\ \end{array} \right) , \end{aligned}$$

which implies that

$$\begin{aligned} \begin{array}{lcl} \left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) +2i\rho _{0} &{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu +2i\rho _{0} &{}\quad aI_* \\ 0 &{}\quad -\alpha P_* e^{-2i\rho _{0}\tau ^{*}} &{}\quad -\alpha I_* e^{-2i\rho _{0}\tau ^{*}} +d +2i\rho _{0}\\ \end{array} \right) E_{1}\\ \quad =2 \left( \begin{array}{c} -\left\{ (3S_*-1-\theta )+u(2S_*+\beta -\theta )\right\} \\ u(\beta -a w)\\ \alpha uwe^{-2i\rho _{0}\tau ^{*}} \\ \end{array} \right) , \end{array} \end{aligned}$$
(57)

It follows that

$$\begin{aligned} E_{1}^{(1)}=\frac{|{\varDelta }_{11}|}{|{\varDelta }_{1}|}, \ \ E_{1}^{(2)}=\frac{|{\varDelta }_{12}|}{|{\varDelta }_{1}|}, \ \ E_{1}^{(3)}=\frac{|{\varDelta }_{13}|}{|{\varDelta }_{1}|}, \nonumber \\ \end{aligned}$$
(58)

where

$$\begin{aligned} {\varDelta }_{11}= & {} 2\left( \begin{array}{lll} -\{(3S_*-1-\theta )+u(2S_*+\beta -\theta )\}&{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0\\ u(\beta -a w)&{}\quad -\beta S_* +a P_* +\mu +2i\rho _{0} &{}\quad aI_* \\ \alpha uwe^{-2i\rho _{0}\tau ^{*}} &{}\quad -\alpha P_* e^{-2i\rho _{0}\tau ^{*}} &{}\quad -\alpha I_* e^{-2i\rho _{0}\tau ^{*}} +d +2i\rho _{0}\\ \end{array} \right) ,\\ {\varDelta }_{12}= & {} 2\left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) +2i\rho _{0} &{}\quad -\{(3S_*-1-\theta )+u(2S_*+\beta -\theta )\}&{}\quad 0\\ -\beta I_* &{} u(\beta -a w) &{} aI_* \\ 0 &{}\quad \alpha uwe^{-2i\rho _{0}\tau ^{*}} &{}\quad -\alpha I_* e^{-2i\rho _{0}\tau ^{*}} +d +2i\rho _{0}\\ \end{array} \right) ,\\ {\varDelta }_{13}= & {} 2\left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) +2i\rho _{0} &{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad -\{(3S_*-1-\theta )+u(2S_*+\beta -\theta )\} \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu +2i\rho _{0} &{}\quad u(\beta -a w) \\ 0 &{}\quad -\alpha P_* e^{-i\rho _{0}\tau ^{*}} &{}\quad \alpha uwe^{-2i\rho _{0}\tau ^{*}}\\ \end{array} \right) ,\\ {\varDelta }_{1}= & {} \left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) +2i\rho _{0} &{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu +2i\rho _{0} &{}\quad aI_* \\ 0 &{}\quad -\alpha P_* e^{-2i\rho _{0}\tau ^{*}} &{}\quad -\alpha I_* e^{-2i\rho _{0}\tau ^{*}} +d +2i\rho _{0}\\ \end{array}\right) . \end{aligned}$$

Similarly putting (52) and (56) into (54), we have

$$\begin{aligned} \left( \int _{-1}^{0}\hbox {d}\eta (\theta ) \right) E_{2}=2\tau ^{*} \left( \begin{array}{c} -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}\\ \beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}\\ \alpha \hbox {Re}\{u\overline{w}\}\\ \end{array} \right) , \end{aligned}$$

which implies that

$$\begin{aligned}&\left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) &{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu &{}\quad aI_* \\ 0 &{}\quad -\alpha P_* &{}\quad -\alpha I_* +d \\ \end{array} \right) E_{2}\\&=2 \left( \begin{array}{c} -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}\\ \beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}\\ \alpha \hbox {Re}\{u\overline{w}\}\\ \end{array} \right) , \end{aligned}$$

and hence,

$$\begin{aligned} \begin{array}{ll} E_{2}^{(1)}=\frac{|{\varDelta }_{21}|}{|{\varDelta }_{2}|}, \ \ E_{2}^{(2)}=\frac{|{\varDelta }_{22}|}{|{\varDelta }_{2}|}, \ \ E_{2}^{(3)}=\frac{|{\varDelta }_{23}|}{|{\varDelta }_{2}|}, \end{array} \end{aligned}$$
(59)

where

$$\begin{aligned} {\varDelta }_{21}= & {} \left( \begin{array}{lll} -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}&{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ \beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}&{}\quad -\beta S_* +a P_* +\mu &{}\quad aI_* \\ \alpha \hbox {Re}\{u\overline{w}\}&{}\quad -\alpha P_* &{}\quad -\alpha I_* +d \\ \end{array} \right) ,\\ {\varDelta }_{22}= & {} \left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) &{}\quad -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}&{}\quad 0\\ -\beta I_* &{}\quad \beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}&{}aI_*\\ 0 &{}\quad \alpha \hbox {Re}\{u\overline{w}\}&{}\quad -\alpha I_* +d \\ \end{array} \right) ,\\ {\varDelta }_{23}= & {} \left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*)&{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad -\{(3S_*-1-\theta )+\hbox {Re}\{u\}(2S_*+\beta -\theta )\}\\ -\beta I_*&{} -\beta S_* +a P_* +\mu &{}\beta \hbox {Re}\{u\}-a \hbox {Re}\{u\overline{w}\}\\ 0&{}\quad -\alpha P_* &{}\quad \alpha \hbox {Re}\{u\overline{w}\} \\ \end{array} \right) ,\\ {\varDelta }_{2}= & {} \left( \begin{array}{lll} -2S_* (1+\theta )+\theta +3S_{*}^2-I_* (\theta -\beta -2I_*) &{}\quad S_* (S_* -\theta )+\beta S_* &{}\quad 0 \\ -\beta I_* &{}\quad -\beta S_* +a P_* +\mu &{} aI_* \\ 0 &{}\quad -\alpha P_* &{}\quad -\alpha I_* +d \\ \end{array} \right) . \end{aligned}$$

From the above analysis, we can compute the following quantities:

$$\begin{aligned} C_{1}(0)= & {} \frac{i}{2\rho _{0}\tau ^{*}}\left( g_{20}g_{11}-2|g_{11}|^2-\frac{1}{3}|g_{02}|^2\right) \\&+\,\frac{1}{2}g_{21}, \\ \mu _{2}= & {} -\frac{\hbox {Re}\{C_{1}(0)\}}{\hbox {Re}\{\acute{\lambda }(\tau ^{*})\}}, \\ \beta _{2}= & {} 2\hbox {Re}\{C_{1}(0)\}, \\ \tau _{2}= & {} -\frac{\hbox {Im}\left\{ C_{1}(0)\right\} +\mu _{2}\hbox {Im}left\{\acute{\lambda }(\tau ^{*})right\}}{\rho _{0}\tau ^{*}}. \end{aligned}$$

The above three quantities \(\mu _2\), \(\beta _2\) and \(\tau _2\) will determine the direction, stability and the periods of the bifurcating periodic solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Saifuddin, M., Sasmal, S.K. et al. A delayed prey–predator system with prey subject to the strong Allee effect and disease. Nonlinear Dyn 84, 1569–1594 (2016). https://doi.org/10.1007/s11071-015-2589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2589-9

Keywords

Navigation