Skip to main content
Log in

Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Lyapunov direct method provides a very effective approach to analyze stability of nonlinear systems. However, the well-known Leibniz rule is not suitable for fractional derivatives, which is the main reason that there are few analytical results on stability of fractional systems. This paper deals with stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Applying fractional Lyapunov direct method and S-procedure lemma, several sufficient conditions on stability and a simple condition on global synchronization of a class of fractional singular dynamical networks in terms of linear matrix inequalities are derived. Finally, two simple examples are given to show that our proposed methods are simple and convenient in computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  3. Diethelm, K.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 11, 4465–4475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lan, Y.H., Zhou, Y.: Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst. Control Lett. 62, 1143–1150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Matignon D.: Stability results on fractional differential equations with applications to control processing. In: Proceedings of IMACS-SMC, pp. 963–968. Lille, France (1996)

  7. Chen, L.P., He, Y.G., Chai, Y., Wu, R.C.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qian, W., Li, T., Cong, S., Fei, S.M.: Improved stability analysis on delayed neural networks with linear fractional uncertainties. Appl. Math. Comput. 217, 3596–3606 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Lazarevć, M.P.: Finite time stability analysis of \(PD^{\alpha }\) fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269–279 (2006)

    Article  MathSciNet  Google Scholar 

  10. Zhang, X.Y.: Some results of linear fractional order time-delay system. Appl. Math. Comput. 197, 407–411 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Abusaksaka, A.B., Partington, J.R.: BIBO stability of some classes of delay systems and fractional systems. Syst. Control Lett. 64, 43–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, J.G., Chen, G.R.: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. control. 54, 1294–1299 (2009)

    Article  MathSciNet  Google Scholar 

  14. Wang, J.R., Zhou, Y., Fec̃kan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J.R., Lv, L.L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, X.F., Hu, L.G., Liu, S., Jiang, W.: Stability criterion for a class of nonlinear fractional differential systems. Appl. Math. Lett. 28, 25–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, L.D., Hu, J.B., Fang, J.A., Zhang, W.B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dyn. 70, 475–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in \((0,2)\). ISA Trans. 56, 102–110 (2015)

  19. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarasov, V.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 18, 2945–2948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kunkel, P., Mehrmann, V.L.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, Zürich (2006)

    Book  MATH  Google Scholar 

  23. Jiang, W.: Eigenvalue and stability of singular differential delay systems. J. Math. Anal. Appl. 297, 305–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, S., Jiang, W.: Asymptotic stability of nonlinear descriptor systems with infinite delays. Ann. Differ. Equ. 26, 174–180 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lu, G.P., Ho, D.W.C.: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation. IEEE Trans. Autom. Control 51, 818–823 (2006)

    Article  MathSciNet  Google Scholar 

  26. Zamani, I., Shafiee, M., Ibeas, A.: Exponential stability of hybrids switched nonlinear singular systems with time-varying delay. J. Franklin Inst. 350, 171–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273, 24–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiong, W.J., Ho, D.W.C., Cao, J.D.: Synchronization analysis of singular hybrid coupled networks. Phys. Lett. A 372, 6633–6637 (2008)

    Article  MATH  Google Scholar 

  29. Koo, J.H., Ji, D.H., Won, S.C.: Synchronization of singular complex dynamical networks with time-varying delays. Appl. Math. Comput. 217, 3916–3923 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Li, H.J., Ning, Z.J., Yin, Y.H., Tang, Y.: Synchronization and state estimation for singular complex dynamical networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 18, 194–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, S., Li, X.Y., Jiang, W., Zhou, X.F.: Mittag–Leffler stability of nonlinear fractional neutral singular systems. Commun. Nonlinear Sci. Numer. Simul. 17, 3961–3966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a Modified Lorenz–Steno system with only one stable equilibrium. Int. J. Bifurc. Chaos 24, 1450127 (2014)

    Article  MATH  Google Scholar 

  33. Wei, Z., Yu, P., Zhang, W., Yao, M.: Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system. Nonlinear Dyn. 82, 131–C141 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yakubovich, V.A.: The on S-procedure in nonlinear control theory. Vestnik Leningrad Univ. Math. 4, 73–93 (1977)

    Google Scholar 

  35. Masubuchi, I., Kamitane, Y., Ohara, A., Suda, N.: \(H_\infty \) control for descriptor systems: a matrix inequalities approach. Automatica 33, 669–673 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, S., Li, X.Y., Jiang, W., Fan, Y.Z.: Adaptive synchronization in complex dynamical networks with coupling delays for general graphs. Appl. Math. Comput. 219, 83–87 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Fund and Tianyuan Special Fund of China (11371027, 11326115, 11471015), Specialized Research Fund for the Doctoral Program of Higher Education of China (20133401120013), Natural Science Project of Colleges of Anhui Province (KJ2013A032) and Doctoral Starting and Outstanding Young Teacher Fund of Anhui University (023033190181, 023033050055, 023033010264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhou, XF., Li, X. et al. Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Nonlinear Dyn 84, 2377–2385 (2016). https://doi.org/10.1007/s11071-016-2651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2651-2

Keywords

Navigation