Skip to main content
Log in

A novel online motion planning method for double-pendulum overhead cranes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel online motion planning method for double-pendulum overhead cranes is proposed. The proposed trajectory is made up of two parts: anti-sway component and trolley positioning component. The objective of the first part is to suppress and eliminate the swings of hook and payload. Lyapunov techniques, LaSalle’s invariance theorem, and Barbalat’s lemma are used to demonstrate that the trolley can be driven to arrive at the desired position, while the unexpected hook swing and payload swing are damped out simultaneously with the proposed trajectory. Numerical simulation results indicate that the proposed control trajectory achieves superior performance and admits strong robustness against parameter variations and external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this paper, we refer to the term ‘offline’ as calculating the trajectory commands in advance of implementation. By contrast, the term ‘online’ implies that the trajectory commands are generated real time to the system. For example, assume that the control period is 5 ms, and then the trajectory commands for the next control action are calculated within the current 5 ms.

References

  1. Blajer, W., Kolodziejczyk, K.: Motion planning and control of gantry cranes in cluttered work environment. IET Control Theory Appl. 1(5), 1370–1379 (2007)

    Article  Google Scholar 

  2. Wu, Z., Xia, X., Zhu, B.: Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dyn. 79, 2639–2657 (2015)

    Article  Google Scholar 

  3. Ngo, Q.H., Hong, K.S.: Sliding-mode anti-sway control if an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)

    Article  Google Scholar 

  4. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    Article  MATH  Google Scholar 

  5. Joshua, V., Dooroo, K., William, S.: Control of tower cranes with double-pendulum payload dynamics. IEEE Trans. Control Syst. Technol. 18(6), 1345–1357 (2010)

    Google Scholar 

  6. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)

    Article  Google Scholar 

  7. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Ind. Electron. 59(1), 414–427 (2012)

    Article  Google Scholar 

  8. Lu, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov–lvanov model. Nonlinear Dyn. 82(3), 1211–1220 (2015)

    Article  MathSciNet  Google Scholar 

  9. Lu, X.: Madelung fluid description on a generalized mixed nonlinear Schrodinger equation. Nonlinear Dyn. 81(1–2), 239–247 (2015)

    Article  MathSciNet  Google Scholar 

  10. Vaughan, J., Yoo, J., Knight, N., Singhose, W.: Multi-input shaping control for multi-hoist cranes. In: Proceedings of the American Control Conference, pp. 3449–3454. Washington, DC (2013)

  11. Lee, H.H., Liang, Y., Segura, D.: A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. ASME J. Dyn. Syst. Meas. Control 128(4), 842–845 (2006)

    Article  Google Scholar 

  12. Gao, D., Guo, W., Yi, J.: Dynamics and GA-based stable control for a class of underactuated mechanical systems. Int. J. Control Autom. Syst. 6(1), 35–43 (2008)

    Google Scholar 

  13. Lee, L.H., Huang, P.H., Shih, Y.C., Chiang, T.C., Chang, C.Y.: Parallel neural network combined with sliding mode control in overhead crane control system. J. Vib. Control 20(5), 749–760 (2014)

    Article  Google Scholar 

  14. Uchiyama, N.: Robust control of rotary crane by partial-state feedback with integrator. Mechatronics 19(8), 1294–1302 (2009)

    Article  Google Scholar 

  15. Uchiyama, N., Ouyang, H., Sano, S.: Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion. Mechatronics 23(8), 1223–1236 (2013)

    Article  Google Scholar 

  16. Garrido, S., Abderrahim, M., Giménez, A., Diez, R., Balaguer, C.: Anti-swinging input shaping control of an automatic construction crane. IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2008)

    Article  Google Scholar 

  17. Blackburn, D., Singhose, W., Kitchen, J., Patrangenaru, V., Lawrence, J., Kamoi, T., Taura, A.: Command shaping for nonlinear crane dynamics. J. Vib. Control 16(4), 477–501 (2010)

    Article  MATH  Google Scholar 

  18. Sorensen, K., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng. Pract. 15(7), 825–837 (2007)

    Article  Google Scholar 

  19. Wu, Z., Xia, X.: Optimal motion planning for overhead cranes. IET Control Theory Appl. in press, doi:10.1049/iet-cta.2014.0069

  20. Zhang, X., Fang, Y., Sun, N.: Minimum-time trajectory planning for underactuated overhead crane systems with state and control constraints. IEEE Trans. Ind. Electron. 61(12), 6915–6925 (2014)

    Article  Google Scholar 

  21. Piazzi, A., Visioli, A.: Optimal dynamic-inversion-based control of an overhead crane. IEE Control Theory Appl. 149(5), 405–411 (2002)

    Article  Google Scholar 

  22. Sun, N., Fang, Y., Wu, X.: An enhanced coupling nonlinear control method for bridge cranes. IET Control Theory Appl. 8(13), 1215–1223 (2014)

    Article  Google Scholar 

  23. Sun, N., Fang, Y.: New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion-based approach. IEEE Trans. Ind. Electron. 29(12), 4723–4734 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sun, N., Fang, Y.: A partially saturated nonlinear controller for overhead cranes with experimental implementation. In: Proceedings of the Karlsruhe, Germany, IEEE International Conference on Robotics Automation, pp. 4473–4478 (2013)

  25. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE Trans. Mechatron. 8(3), 418–423 (2003)

    Article  Google Scholar 

  26. Le, T.A., Kim, G.H., Kim, M.Y., Lee, S.G.: Partial feedback linearization control of overhead cranes with varying cable lengths. Int. J. Precis. Eng. Manuf. 13(4), 501–507 (2012)

    Article  Google Scholar 

  27. Zhang, M., Ma, X., Rong, X., Tian, X., Li, Y.: Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parameteric uncertainties and external disturbances. Mech. Syst. Signal Process. (2016). doi:10.1016/j.ymssp.2016.02.013

  28. Burg, T., Dawson, D., Rahn, C., Rbodes,W.: Nonlinear control of an overhead crane via the saturating control approach of Teel. In: Proceedings of the Minneapolis, Minnesota, USA, IEEE International Conference on Robotics Automation, pp. 3155–3160 (1996)

  29. Ma, B., Fang, Y., Zhang, Y.: Switching-based emergency braking control for an overhead crane system. IET Control Theory Appl. 4(9), 1739–1747 (2010)

    Article  Google Scholar 

  30. Hu, G., Makkar, C., Dixon, W.E.: Energy-based nonlinear control of underactuated Euler–Lagrange systems subject to impacts. IEEE Trans. Autom. Control 52(9), 1742–1748 (2007)

    Article  MathSciNet  Google Scholar 

  31. Chwa, D.: Nonlinear tracking control of 3-D overhead crane s against the initial swing angle and the variation of payload weight. IEEE Trans. Control Syst. Technol. 17(4), 876–883 (2009)

    Article  Google Scholar 

  32. Fang, Y., Ma, B., Wang, P., Zhang, X.: A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans. Control Syst. Technol. 20(1), 241–248 (2012)

    Google Scholar 

  33. Hua, Y.J., Shine, Y.K.: Adaptive coupling control for overhead crane systems. Mechatronics 17(2–3), 143–152 (2007)

  34. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Phase plane analysis based motion planning for underactuated overhead cranes. In: Proceedings of the Shanghai, China, IEEE International Conference on Robotics Automation, pp. 3283–3488 (2011)

  35. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6(10), 1410–1423 (2012)

    Article  MathSciNet  Google Scholar 

  36. Sun, N., Fang, Y.: An efficient online trajectory generating method for underactuated crane systems. Int. J. Robust Nonlinear Control 24, 1653–1663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, D.J., Wang, Z., Behal, A.: Motion segmentation and control design for UCF-MANU-An intelligent assistive robotic manipulator. IEEE/ASME Trans. Mechatron. 17(5), 936–948 (2012)

    Article  Google Scholar 

  38. You, C., Han, J.: Trajectory planning of manipulator for a hitting task with autonomous incremental learning. In: Proceedings of the Sanya, China, IEEE International Conference on Robotics Biomimetics, pp. 1446–1450 (2007)

  39. Huang, J., Liang, Z., Zang, Q.: Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams. Mech. Syst. Signal Process. 54–55, 357–366 (2015)

    Article  Google Scholar 

  40. Masoud, Z., Nayfeh, A.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34, 347–358 (2003)

    Article  MATH  Google Scholar 

  41. Al-Sweiti, Y., Söffker, D.: Modeling and control of an elastic ship-mounted crane using variable gain model-based controller. J. Vib. Control 13(5), 657–685 (2007)

    Article  MATH  Google Scholar 

  42. Guo, W., Liu, D., Yi, J., Zhao, D.: Passivity-based-control for double-pendulum-type overhead cranes. In: Proceedings of the IEEE Region 10 Conference Analog Digital Techniques in Electrical Engineering, Chiang Mai, Thailand, pp. D546–D549 (2004)

  43. Tuan, L.A., Lee, S.G.: Sliding mode controls of double-pendulum crane systems. J. Mech. Sci. Technol. 27(6), 1863–1873 (2013)

    Article  Google Scholar 

  44. Liu, D., Guo, W., Yi, J.: GA-based composite sliding mode fuzzy control for double-pendulum- type overhead crane. In: Proceedings of the Changsha, China, International Conference on Fuzzy System Knowledge Discovery, pp. 792–801 (2005)

  45. Adeli, M., Zarabadipour, H., Aliyari Shoorehdeli, M.: Anti-swing control of a double- pendulum-type overhead crane using parallel distributed fuzzy LQR controller. In: Proceedings of the International Conference on Control, Instrumentation and Automation, pp. 401–406 (2011)

  46. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ma, X., Chai, H. et al. A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn 85, 1079–1090 (2016). https://doi.org/10.1007/s11071-016-2745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2745-x

Keywords

Navigation