Skip to main content
Log in

Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a robust adaptive position control scheme for automotive electronic throttle (ET) valve. Compared with the conventional throttle control systems, in this paper, a robust adaptive sliding mode (RASM) control scheme is developed in order to eliminate the effects of the parameter uncertainties and nonlinearities including friction, return-spring limp-home and gear backlash. It is shown that both the lumped uncertainty bound and the control gains are adaptively estimated by the update laws, such that not only the bound information of the lumped uncertainty and the control gains are no longer required, but also a robust tracking performance can be ensured in the presence of the parametric variations and disturbances. The comparative simulation and experimental studies are demonstrated to verify the excellent transient and steady-state tracking performance of the proposed RASM controller for ET systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zito, G., Tona, P., Lassami, B.: The throttle control benchmark. In: Proceedings of E-COSM, IFAC Workshop Engine Powertrain Control, Simulation, Modelling, Rueil-Malmaison, France, pp. 1–2 (2009)

  2. Aono, T., Kowatari, T.: Throttle-control algorithm for improving engine response based on air-intake model and throttle-response model. IEEE Trans. Ind. Electron. 53(3), 915–921 (2006)

    Article  Google Scholar 

  3. Deur, J., Pavkovic, D., Peric, N., Jansz, M., Hrovat, D.: An electronic throttle control strategy including compensation of friction and limp-home effects. IEEE Trans. Ind. Appl. 40(3), 821–834 (2004)

    Article  Google Scholar 

  4. Alt, B., Blath, J.P., Svaricek, F., Schultalbers, M.: Self-tuning control design strategy for an electronic throttle with experimental robustness analysis. In: Proceedings of American Control Conference, pp. 6127–6132 (2010)

  5. Grepl, R., Lee, B.: Modeling, parameter estimation and nonlinear control of automotive electronic throttle using a rapid-control prototyping technique. Int. J. Autom. Technol. 11(4), 601–610 (2010)

    Article  Google Scholar 

  6. Vasak, M., Baotic, M., Morari, M., Petrovic, I., Peric, N.: Constrained optimal control of an electronic throttle. Int. J. Control 79(5), 465–478 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vasak, M., Baotic, M., Petrovic, I., Peric, N.: Hybrid theory-based time-optimal control of an electronic throttle. IEEE Trans. Ind. Electron. 54(3), 1483–1494 (2007)

    Article  MATH  Google Scholar 

  8. Yuan, X., Wang, Y.: Neural networks based self-learning PID control of electronic throttle. Nonlinear Dyn. 55(4), 385–393 (2009)

    Article  MATH  Google Scholar 

  9. Yuan, X., Wang, Y., Sun, W., Wu, L.: RBF networks-based adaptive inverse model control system for electronic throttle. IEEE Trans. Veh. Technol. 59(8), 3757–3765 (2010)

    Article  Google Scholar 

  10. Jansri, A., Pongsuttiyakorn, T., Sooraksa, P.: On practical control of electronic throttle body. In: Proceedings of 9th Int. Conf. Fuzzy Syst. Knowl. Discov., pp. 349–351 (2012)

  11. Wang, C.H., Huang, D.Y.: A new intelligent fuzzy controller for nonlinear hysteretic electronic throttle in modern intelligent automobiles. IEEE Trans. Ind. Electron. 60(16), 2332–2345 (2013)

    Article  Google Scholar 

  12. Pavkovic, D., Deur, J., Jansz, M., Peric, N.: Adaptive control of automotive electronic throttle. Control Eng. Pract. 14(2), 121–136 (2006)

    Article  Google Scholar 

  13. Pozo, F., Acho, L., Vidal, Y.: Nonlinear adaptive tracking control of an electronic throttle system: benchmark experiments. In: Proceedings of E-COSM IFAC Workshop Engine Powertrain Control, Simulation, Modelling, Rueil-Malmaison, France (2009)

  14. Bernardo, M., Gaeta, A., Montanaro, U., Santini, S.: Synthesis and experimental validation of the novel LQ-NEMCSI adaptive strategy on an electronic throttle valve. IEEE Trans. Control Syst. Technol. 18(6), 1325–1337 (2010)

    Google Scholar 

  15. Jiao, X., Zhang, J., Shen, T.: An adaptive servo control strategy for automotive electronic throttle and experimental validation. IEEE Trans. Ind. Electron. 61(11), 6275–6284 (2014)

    Article  Google Scholar 

  16. Wang, H., Kong, H., Man, Z., Do, M.T., Cao, Z., Shen, W.: Sliding mode control for steer-by-wire systems with AC motors in road vehicles. IEEE Trans. Ind. Electron. 61(3), 1596–1611 (2014)

    Article  Google Scholar 

  17. Wang, H., Man, Z., Shen, W., Cao, Z., Zheng, J., Jin, J., Do, M.T.: Robust control for steer-by-wire systems with partially known dynamics. IEEE Trans. Ind. Inform. 10(4), 2003–2015 (2014)

    Article  Google Scholar 

  18. Zheng, J., Wang, H., Man, Z., Jin, J., Fu, M.: Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode. IEEE Trans. Mechatron. 20(4), 1743–1752 (2015)

    Article  Google Scholar 

  19. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis, New York (1998)

    MATH  Google Scholar 

  20. Pai, M.C.: Dynamic output feedback RBF neural network sliding mode control for robust tracking and model following. Nonlinear Dyn. 79(2), 1023–1033 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, L., Pu, J., Song, X., Fu, Z., Wang, X.: Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity. Nonlinear Dyn. 76(4), 1857–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mobayen, S.: Design of CNF-based nonlinear integral sliding surface for matched uncertain linear systems with multiple state-delays. Nonlinear Dyn. 77(3), 1047–1054 (2014)

  23. Mobayen, S.: Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity (2014). doi:10.1002/cplx.21600

    MathSciNet  Google Scholar 

  24. Mobayen, S.: Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach. Complex (2014). doi:10.1002/cplx.21624

    Google Scholar 

  25. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1), 669–683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mobayen, S.: Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9(8), 1294–1301 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mobayen, S.: An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dyn. 82(1), 599–610 (2015)

    Article  MathSciNet  Google Scholar 

  28. Pan, Y., Ozguner, U., Dagci, O.H.: Variable-structure control of electronic throttle valve. IEEE Trans. Ind. Electron. 55(11), 3899–3907 (2008)

    Article  Google Scholar 

  29. Reichhartinger, M., Horn, M.: Application of higher order sliding mode concepts to a throttle actuator for gasoline engines. IEEE Trans. Ind. Electron. 56(9), 3322–3329 (2009)

    Article  Google Scholar 

  30. Shieh, N.C.: Robust output tracking control of a linear brushless DC motor with time-varying disturbances. IEE Proc. Electr. Power Appl. 149(1), 39–45 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nature Science Foundation of China (No. 61503113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, L., He, P. et al. Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn 85, 1331–1344 (2016). https://doi.org/10.1007/s11071-016-2763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2763-8

Keywords

Navigation