Skip to main content
Log in

Codimension-two bifurcation and multistability coexistence in an inertial two-neuron system with multiple delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Employing the codimension-two bifurcation analysis, multistability coexistence and the corresponding parameter regions can be exhibited in the nonlinear dynamical systems. In this paper, an inertial two-neuron system with multiple delays is established and the dynamic behaviors are studied. The neural system exhibits one/three equilibria by the pitchfork bifurcation. Analyzing the Hopf bifurcation, we found that multiple delays can induce system dynamics to exhibit the stability switching. Further, the stability regions with the delayed dependent/independent are illustrated, followed which one of the codimension-two bifurcations, i.e., the Hopf–Hopf bifurcation is obtained from the intersection points of the Hopf bifurcation curves. The dynamic behavior near the bifurcation singularity is analyzed. It follows that the original system exhibits the stability coexistence with two different periodic activities. Finally, the other codimension-two bifurcation, i.e., the Pitchfork–Hopf bifurcation is investigated, where the system characteristic equation has a zero and a pair of pure imaginary eigenvalues. Theoretical results and numerical simulations are illustrated to show neural system exhibits the stability coexistence with a pair of nontrivial equilibrium and a periodic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)

    Article  MathSciNet  Google Scholar 

  2. Feudel, U.: Complex dynamics in multistable systems. Int. J. Bifurc. Chaos 18, 1607–1626 (2008)

    Article  MathSciNet  Google Scholar 

  3. Gu, H.G., Pan, B.B., Li, Y.Y.: The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn. 82, 1191–1210 (2015)

    Article  MathSciNet  Google Scholar 

  4. Song, Z.G., Yang, K., Xu, J., Wei, Y.C.: Multiple Pitchfork bifurcations and multiperiodicity coexistences in a delay-coupled neural oscillator system with inhibitory-to-inhibitory connection. Commun. Nonlinear Sci. Numer. Simul. 29, 327–345 (2015)

    Article  MathSciNet  Google Scholar 

  5. Song, Z.G., Xu, J.: Stability switches and multistability coexistence in a delay-coupled neural oscillators system. J. Theor. Biol. 313, 98–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atteneave, F.: Multistability in perception. Sci. Am. 225, 63–71 (1971)

    Article  Google Scholar 

  7. Schwartz, J.L., Grimault, N., Hupé, J.M., Moore, C.J.B.C.J., Pressnitzer, D.: Multistability in perception: sensory modalities, an overview. Philos. Trans. R. Soc. B. 367, 896–905 (2012)

    Article  Google Scholar 

  8. Song, Z.G., Xu, J.: Bifurcation and chaos analysis in a delayed two-neural network with slope ratio of activation function. Int. J. Bifurc. Chaos 22, 1250105 (2012)

    Article  MATH  Google Scholar 

  9. Ma, J., Hu, B.L., Wang, C.N., Jin, W.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ma, J., Huang, L., Tang, J.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 17, 4281–4293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, K.L., Wang, C.J.: Coexistence of attractors and effects of noise on coupled piecewise maps. Nonlinear Dyn. 79, 377–385 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fröhlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74, 031922 (2006)

    Article  Google Scholar 

  13. Huang, G., Cao, J.: Delay-dependent multistability in recurrent neural networks. Neural Netw. 23, 201–209 (2010)

    Article  Google Scholar 

  14. Nie, X., Cao, J., Fei, S.: Multistability and instability of delayed competitive neural networks with nondecreasing piecewise linear activation functions. Neurocomputing 119, 281–291 (2013)

    Article  Google Scholar 

  15. Huang, Z., Song, Q., Feng, C.: Multistability in networks with self-excitation and high-order synaptic connectivity. IEEE Trans. Circuits Syst. I(57), 2144–2155 (2010)

    Article  MathSciNet  Google Scholar 

  16. Nie, X., Huang, Z.: Multistability and multiperiodicity of high-order competitive neural networks with a general class of activation functions. Neurocomputing 82, 1–13 (2012)

    Article  Google Scholar 

  17. Lin, K.H., Shih, C.W.: Multiple almost periodic solutions in nonautonomous delayed neural networks. Neural Comput. 19, 3392–3420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, L., Lu, W., Chen, T.: Multistability and new attraction basins of almost-periodic solutions of delayed neural networks. IEEE Trans. Neural Netw. 20, 1581–1593 (2009)

    Article  Google Scholar 

  19. Steriade, M., Timofeev, I., Grenier, F.: Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)

    Google Scholar 

  20. Fröhlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74, 031922 (2006)

    Article  Google Scholar 

  21. Tass, P.A., Hauptmann, C.: Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int. J. Psychophysiol. 64, 53–61 (2007)

    Article  Google Scholar 

  22. Shilnikov, A., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005)

    Article  MathSciNet  Google Scholar 

  23. Lechner, H.A., Baxter, D.A., Clark, J.W., Byrne, J.H.: Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia. J. Neurophysiol. 75, 957–962 (1996)

    Google Scholar 

  24. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708–711 (1996)

    Article  Google Scholar 

  25. Masoller, C., Torrent, M.C., García-Ojalvo, J.: Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Phil. Trans. R. Soc. A 367, 3255–3266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, J.F., Wu, J.H.: Multistability and gluing bifurcation to butterflies in coupled networks with non-monotonic feedback. Nonlinearity 22, 1383–1412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, Y., Makarov, V.A., Velarde, M.G.: Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks. Biol. Cybern. 101, 147–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Buric, N., Rankovic, D.: Bursting neurons with coupling delays. Phys. Lett. A 363, 282–289 (2007)

    Article  Google Scholar 

  29. Zhen, B., Xu, J.: Simple zero singularity analysis in a coupled FitzHugh-Nagumo neural system with delay. Neurocomputing 73, 874–882 (2010)

    Article  Google Scholar 

  30. Buric, N., Grozdanovic, I., Vasovic, N.: Excitable systems with internal and coupling delays. Chaos Solit. Fract. 36, 853–861 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, Z.G., Xu, J.: Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dyn. 67, 309–328 (2012)

    Article  MATH  Google Scholar 

  32. Song, Z.G., Xu, J.: Bursting near Bautin bifurcation in a neural network with delay coupling. Int. J. Neural. Syst. 19, 359–373 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zhen, B., Xu, J.: Bautin bifurcation analysis for synchronous solution of a coupled FHN neural system with delay. Commun. Nonlinear Sci. Numer. Simulat. 15, 442–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, Z.G., Xu, J.: Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays. Cogn. Neurodyn. 7, 505–521 (2013)

    Article  MathSciNet  Google Scholar 

  35. He, X., Li, C., Shu, Y.: Bogdanov–Takens bifurcation in a single inertial neuron model with delay. Neurocomputing 89, 193–201 (2012)

    Article  Google Scholar 

  36. Dong, T., Liao, X.F., Huang, T.W.: Hopf–Pitchfork bifurcation in an inertial two-neuron system with time delay. Neurocomputing 97, 223–232 (2012)

    Article  Google Scholar 

  37. Ge, J.H., Xu, J.: Weak resonant double Hopf bifurcations in an inertial four-neuron model with time delay. Int. J. Neural. Syst. 22, 63–75 (2012)

    Article  Google Scholar 

  38. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  39. Qin, H.X., Ma, J., Jin, W.Y., Wang, C.N.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

  40. Song, Z.G., Xu, J.: Stability switches and Bogdanov–Takens bifurcation in an inertial two-neurons coupling system with multiple delays. Sci. China Technol. Sci. 57, 893–904 (2014)

    Article  Google Scholar 

  41. Song, Z.G., Xu, J., Zhen, B.: Multitype activity coexistence in an inertial two-neuron system with multiple delays. Int. J. Bifurc. Chaos 25, 1530040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Angelaki, D.E., Correia, M.J.: Models of membrane resonance in pigeon semicircular canal type II hair cells. Biol. Cybern. 65, 1–10 (1991)

    Article  Google Scholar 

  43. Mauro, A., Conti, F., Dodge, F.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol. 55, 497–523 (1970)

  44. Badcock, K.L., Westervelt, R.M.: Dynamics of simple electronic neural networks. Phys. D 28, 305–316 (1987)

    Article  MathSciNet  Google Scholar 

  45. Wheeler, D.W., Schieve, W.C.: Stability and chaos in an inertial two-neuron system. Phys. D 105, 267–284 (1997)

    Article  MATH  Google Scholar 

  46. Liu, Q., Liao, X.F., Guo, S.T., Wu, Y.: Stability of bifurcating periodic solutions for a single delayed inertial neuron model under periodic excitation. Nonlinear Anal-Real. World Appl. 10, 2384–2395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, Q., Liao, X.F., Liu, Y., Zhou, S.B., Guo, S.T.: Dynamics of an inertial two-neuron system with time delay. Nonlinear Dyn. 58, 573–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grant Nos. 11302126, 11472160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Wang, C. & Zhen, B. Codimension-two bifurcation and multistability coexistence in an inertial two-neuron system with multiple delays. Nonlinear Dyn 85, 2099–2113 (2016). https://doi.org/10.1007/s11071-016-2816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2816-z

Keywords

Navigation