Skip to main content
Log in

Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multi-scroll chaotic oscillators exhibit more rich dynamics and higher unpredictability than double-scroll ones. However, in electronics, the challenge is yet generating as many scrolls as the device capabilities allow it. For instance, experiments realized during the last 4 years showed the generation of 12 scrolls using commercially available amplifiers and 5 scrolls with an integrated circuit fabricated with technology of 0.5 \(\upmu \)m. The generation of these very few number of scrolls is due to the limitations of the electronic devices, like voltage range and frequency response. In this manner, to cope with the problem on generating many scrolls, this article shows the usefulness of field-programmable gate arrays (FPGAs) to generate 50 scrolls at 66 MHz. Computer arithmetic is detailed as well as realizations of single-constant multiplication blocks with fixed-point notation both to accelerate the processing speed and to reduce FPGA resources. Finally, experimental results show good agreement with numerical simulations for the generation of 10, 11, 18, 20, 30, 40 and 50 scrolls using the Altera Cyclone IV GX FPGA DE2i-150.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shen, C., Yu, S., Lu, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 61(3), 854–864 (2014)

    Article  Google Scholar 

  2. Pehlivan, I., Moroz, I.M., Vaidyanathan, S.: Analysis, synchronization and circuit design of a novel butterfly attractor. J. Sound Vib. 333(20), 5077–5096 (2014)

    Article  Google Scholar 

  3. Tahir, F.R., Jafari, S., Pham, V.-T., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(4) (2015). doi:10.1142/S021812741550056X

  4. Suykens, J.A.K., Vandewalle, J.: Generation of n-double scrolls (n = 1, 2, 3, 4,). IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(11), 861–867 (1993)

    Article  MATH  Google Scholar 

  5. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: On the realization of n-scroll attractors. In: ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999, vol. 5, pp. 483–486. IEEE (1999)

  6. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua’s circuit. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(3), 425–429 (2000)

    Article  Google Scholar 

  7. Yalçin, M.E., Suykens, J.A.K., Vandewalle, J., Özoğuz, S.: Families of scroll grid attractors. Int. J. Bifurc. Chaos 12(01), 23–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lü, J., Chen, G., Xinghuo, Y., Leung, H.: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. I Regul. Pap. 51(12), 2476–2490 (2004)

    Article  MathSciNet  Google Scholar 

  9. Yalcin, M.E.: Increasing the entropy of a random number generator using n-scroll chaotic attractors. Int. J. Bifurc. Chaos 17(12), 4471–4479 (2007)

    Article  MathSciNet  Google Scholar 

  10. Pham, V.-T., Volos, C.K., Vaidyanathan, S.: Multi-scroll chaotic oscillator based on a first-order delay differential equation. In: Azar, A.T., Vaidyanathan, S. (eds.) Chaos Modeling and Control Systems Design, Volume 581 of Studies in Computational Intelligence, pp. 59–72. Springer, Berlin (2015)

    Google Scholar 

  11. Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(04), 775–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gámez-Guzmán, L., Cruz-Hernández, C., López-Gutiérrez, R.M., García-Guerrero, E.E.: Synchronization of chuas circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2765–2775 (2009)

    Article  Google Scholar 

  13. Yang, J.Q., Chen, Y.T., Zhu, F.L.: Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing 167, 587–595 (2015)

    Article  Google Scholar 

  14. Murillo-Escobar, M.A., Cruz-Hernandez, C., Abundiz-Perez, F., Lopez-Gutierrez, R.M.: A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Expert Syst. Appl. 42(21), 8198–8211 (2015)

    Article  Google Scholar 

  15. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Rob. Auton. Syst. 61(12), 1314–1322 (2013)

    Article  Google Scholar 

  16. Cicek, I., Pusane, A.E., Dundar, G.: A novel design method for discrete time chaos based true random number generators. Integr. VLSI J. 47(1), 38–47 (2014)

    Article  Google Scholar 

  17. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24(12), 128710 (2015)

    Article  Google Scholar 

  18. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Article  MathSciNet  Google Scholar 

  19. Chen, D., Sun, Z., Ma, X., Chen, L.: Circuit implementation and model of a new multi-scroll chaotic system. Int. J. Circuit Theory Appl. 42(4), 407–424 (2014)

    Article  Google Scholar 

  20. Sundarapandian, V., Pehlivan, I.: Analysis, control, synchronization, and circuit design of a novel chaotic system. Math. Comput. Model. 55(7–8), 1904–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zuo, T., Sun, K., Ai, X., Wang, H.: High-order grid multiscroll chaotic attractors generated by the second-generation current conveyor circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(10), 818–822 (2014)

    Article  Google Scholar 

  22. Ma, J., Xinyi, W., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)

    Article  Google Scholar 

  23. Ontanon-Garcia, L.J., Jimenez-Lopez, E., Campos-Canton, E., Basin, M.: A family of hyperchaotic multi-scroll attractors in R-n. Appl. Math. Comput. 233, 522–533 (2014)

  24. Ma, Y., Li, Y., Jiang, X.: Simulation and circuit implementation of 12-scroll chaotic system. Chaos Solitons Fractals 75, 127–133 (2015)

    Article  MathSciNet  Google Scholar 

  25. Trejo-Guerra, R., Tlelo-Cuautle, E., Jimenez-Fuentes, M., Munoz-Pacheco, J.M., Sanchez-Lopez, C.: Multiscroll floating gate-based integrated chaotic oscillator. Int. J. Circuit Theory Appl. 41(8), 831–843 (2013)

    Article  Google Scholar 

  26. Trejo-Guerra, R., Tlelo-Cuautle, E., Jimenez-Fuentes, J.M., Sanchez-Lopez, C., Munoz-Pacheco, J.M., Espinosa-Flores-Verdad, G., Rocha-Perez, J.M.: Integrated circuit generating 3- and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4328–4335 (2012)

  27. Munoz-Pacheco, J.M., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., Trejo-Guerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using cfoas. Int. J. Electron. 101(11), 1559–1569 (2014)

    Article  Google Scholar 

  28. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nunez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(13), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  29. Tuntas, R.: A new intelligent hardware implementation based on field programmable gate array for chaotic systems. Appl. Soft Comput. 35, 237–246 (2015)

    Article  Google Scholar 

  30. Fang, X., Wang, Q., Guyeux, C., Bahi, J.M.: FPGA acceleration of a pseudorandom number generator based on chaotic iterations. J. Inf. Secur. Appl. 19(1), 78–87 (2014)

    Google Scholar 

  31. Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Fernandez, F.V.: Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. Appl. Math. Comput. 219(15), 8163–8168 (2013)

  32. Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Fernandez, F.: Application of computational intelligence techniques to maximize unpredictability in multiscroll chaotic oscillators. In: Fakhfakh, M., Tlelo-Cuautle, E., Siarry, P. (eds.) Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design, pp. 59–81. Springer, Berlin (2015)

    Chapter  Google Scholar 

  33. Galias, Z.: The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems, and how to avoid them. IEEE Circuits Syst. Mag. 13(3), 35–52 (2013)

  34. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays, 3rd edn. Springer, Berlin (2007)

  35. Takahashi, Y., Sekine, T., Yokoyama, M.: A comparison of multiplierless multiple constant multiplication using common subexpression elimination method. In: MWSCAS 2008. 51st Midwest Symposium on Circuits and Systems, 2008, pp. 298–301 (2008)

  36. Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3(2) (2007). doi:10.1145/1240233.1240234

  37. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proc. IEEE 93(2), 232–275 (2005)

    Article  Google Scholar 

  38. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)

    MATH  Google Scholar 

  39. Jain, R.K.: Numerical solution of ordinary differential equations. Ph.D. thesis (1968)

Download references

Acknowledgments

This work is partially supported by CONACyT/Mexico under Project 237991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tlelo-Cuautle.

Appendices

Appendix 1

figure a

Appendix 2

A one-step method for solving a dynamical system like (5) can be described in a general way by (6), where \(\phi (t,y,h)\) is known as increment function and \(\lambda =\left( \frac{\partial f}{\partial y} \right) _n\) [38, 39]

$$\begin{aligned}&\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)=\lambda y,\quad y(t_0)=y_0,\quad t\in [t_0,b] \end{aligned}$$
(5)
$$\begin{aligned}&y_{n+1}=y_n+h\phi (t_n,y_n,h),\quad n=0,1,\ldots , N-1 \end{aligned}$$
(6)

Assuming that (5) has a unique solution in \([t_0,b]\) and that \(y(t)\in C^{(p+1)}\) \([t_0,b]\) for \(p\ge 1\), then the solution y(t) can be expanded (Taylor’s series) at any point \(t_n\) like in (7). Considering (8) and that \(h \phi (t_n,y_n,h)\) is obtained from \(h\phi (t_n,y(t_n),h)\), then the approximated value for \(y_n\) instead of the exact value of \(y(t_n)\) is obtained from Taylor’s series method of order p and described by (9) to approximate \(y(t_{n+1})\) [39].

$$\begin{aligned}&y(t_{n+1})=y(t_n)+hy^{\prime }(t_n)+\frac{h^2}{2!}y^{\prime \prime }(t_n)+\cdots \end{aligned}$$
(7)
$$\begin{aligned}&h\phi (t_n,y(t_n),h)=hy^{\prime }(t_n)+\frac{h^2}{2!}y^{\prime \prime }(t_n)\nonumber \\&\quad +\cdots +\frac{h^p}{p!}y^{(p)}(t_n) \end{aligned}$$
(8)
$$\begin{aligned}&y_{n+1}=y_n+h\phi (t_n,y_n,h),\quad n=0, 1, 2, \ldots , N-1\nonumber \\ \end{aligned}$$
(9)

Therefore, if \(p=1\), one gets Euler’s method, as described by (10)

$$\begin{aligned} y_{n+1}=y_n+hf(t_n,y_n),\quad n=0, 1, 2, \ldots , N-1 \end{aligned}$$
(10)

From an stability analysis considering (5) and assuming that \(\partial f/ \partial y\) is relatively invariant in the region of interest, then the solution to (5) is given by (11), and considering that \(t=t_0+nh\) one gets (12),

$$\begin{aligned} y(t)= & {} y(t_0)\mathrm{e}^{\lambda (t-t_0)} \end{aligned}$$
(11)
$$\begin{aligned} y(t_n)= & {} y(t_0)\mathrm{e}^{\lambda n h}=y_0(\mathrm{e}^{\lambda h})^n \end{aligned}$$
(12)

When applying a one-step method to (5), the solution is given by (13), where \(c_1\) is a constant and \(E(\lambda h) \approx \mathrm{e}^{\lambda h}\) [39].

$$\begin{aligned} y_n=c_1(E(\lambda h))^n \end{aligned}$$
(13)

Considering the set of equations for the chaotic oscillator shown in (14), it has a unique equilibrium point at (0, 0, 0), then its characteristic equation is given by (15),

$$\begin{aligned} \dot{x}= & {} y\nonumber \\ \dot{y}= & {} z\nonumber \\ \dot{z}= & {} -ax-by-cz+d_1f(x;_1,h_1,p_1,q_1) \end{aligned}$$
(14)
$$\begin{aligned} \lambda ^3+c\lambda ^2+b\lambda +a=0 \end{aligned}$$
(15)

Solving (15), one gets: \(\lambda _1=-\eta \) and \(\lambda _{2,3}=\alpha _1\pm \beta i\), where \(\lambda _1<0\), \(\alpha _1>0\) and \( \beta \ne 0\). Then, (14) has a negative eigenvalue and one pair of complex eigenvalues with positive real part [8]. As a result, a numerical method solving (14) will simulate chaotic behavior under the conditions of \(\lambda _1, \alpha _1, \beta \). This result is extended to a multi-scroll chaotic oscillator because in (14), \(f(x;_1,h_1,p_1,q_1)\) is a piecewise-linear (PWL) function consisting of slopes, offsets and saturation values. For example, simulating the generation of 2 scrolls, the PWL function is given by (16), where \(\alpha =16.5e-3\), \(m=60,606\), \(a=b=c=d_1=0.7\). In this case: \(\lambda _1=-0.8410142, \lambda _{2,3}=0.07050\pm 0.90201i\).

$$\begin{aligned} f(x) = \left\{ \begin{array}{l@{\quad }l} 1 &{} \text{ if } x>\alpha \\ \frac{x}{m} &{} \text{ if } |x|\le \alpha \\ -1 &{} \text{ if } x<-\alpha \end{array} \right. \end{aligned}$$
(16)

Since (14) has at least one \(\lambda >0\), then Euler’s method is relatively stable if \(\mid E(\lambda h) \mid \le \mathrm{e}^{\lambda h}\) for \(\lambda >0\). Therefore, applying (10) for solving (14) will lead to the true solution if for an arbitrary initial condition \(y_0\),

$$\begin{aligned} \displaystyle \lim _{h \rightarrow 0}{y_n=y(t)} \text{ for } t\in [t_0,b],\quad t_n=t \end{aligned}$$
(17)

Finally, considering the sampling theorem, \(\tau _{\min }=\frac{1}{f}\), the condition is \(h\le \frac{\tau _{\min }}{2} \) in order to to converge the numerical method to the true solution when \(h\rightarrow 0\), i.e., better when h is relatively low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlelo-Cuautle, E., Pano-Azucena, A.D., Rangel-Magdaleno, J.J. et al. Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn 85, 2143–2157 (2016). https://doi.org/10.1007/s11071-016-2820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2820-3

Keywords

Navigation