Skip to main content
Log in

A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a sliding-window approximation-based fractional least mean square (FLMS) algorithm for parameter estimation of Hammerstein nonlinear autoregressive moving average system with exogenous noise. The FLMS algorithm available in the literature makes use of data available at the current iteration only (or memory-less algorithm). This results in poor convergence rate of the algorithm, and the presence of immeasurable noise terms in the information vector makes identification a difficult task. The sliding-window approximation-based fractional LMS (SW-FLMS) algorithm uses not only the current data but also the past data at each iteration. The proposed algorithm uses sliding-window approximation of the expectation where the length of data used by SW-FLMS algorithm determines the size of sliding window. Moreover, a variable convergence approach is also proposed for fast convergence of SW-FLMS algorithm. Compared with the standard FLMS algorithm, the proposed SW-FLMS algorithms can converge at a fast rate to highly accurate parameter estimates. Estimation accuracy and convergence rate of the standard FLMS algorithm and proposed methods are evaluated for 200 independent runs. Simulation results confirm that performance of standard FLMS algorithm can be improved by the use of proposed modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raja, M.A.Z., Chaudhary, N.I.: Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process. 8(9), 968–980 (2014)

    Article  Google Scholar 

  2. Chaudhary, N.I., Raja, M.A.Z.: Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn. 79(2), 1385–1397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Raja, M.A.Z., Chaudhary, N.I.: Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process. 107, 327–339 (2015)

    Article  Google Scholar 

  4. Chaudhary, N.I., Raja, M.A.Z.: Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process. 116, 141–151 (2015)

    Article  Google Scholar 

  5. Chaudhary, N.I., Raja, M.A.Z.: Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn (2015). doi:10.1007/s11071-015-2279-7

    MathSciNet  Google Scholar 

  6. Hu, H., Ding, R.: Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn. 76(1), 777–784 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaudhary, N.I., Raja, M.A.Z., Aslam, M.S., Ahmed, N.: Novel generalization of Volterra LMS algorithm to fractional order with application to system identification. Neural Comput. Appl. (2016). doi:10.1007/s00521-016-2548-5

    Google Scholar 

  8. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  9. Zhang, B., Billings, S.A.: Identification of continuous-time nonlinear systems: the nonlinear difference equation with moving average noise (NDEMA) framework. Mech. Syst. Signal Process. 60, 810–835 (2015)

    Article  Google Scholar 

  10. Chen, J., Zhang, Y., Ding, R.: Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model. Nonlinear Dyn. 72(4), 865–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, C., Tang, T.: Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55(2–3), 135–144 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Fruzzetti, K.P., Palazoǧlu, A., McDonald, K.A.: Nolinear model predictive control using Hammerstein models. J. Process Control 7(1), 31–41 (1997)

    Article  Google Scholar 

  14. Elleuch, K., Kharrat, M., Chaari, A., Chaabane, M.: Modeling and identification of block-oriented heat transfer process. Int. J. Inf. Syst. Sci. 5(1), 41–56 (2009)

    MATH  Google Scholar 

  15. Rébillat, M., Hennequin, R., Corteel, E., Katz, B.F.: Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices. J. Sound Vib. 330(5), 1018–1038 (2011)

    Article  Google Scholar 

  16. Holcomb, C.M., de Callafon, R.A., Bitmead, R.R.: Closed-loop identification of Hammerstein systems with application to gas turbines. IFAC Proc. Vol. 47(3), 493–498 (2014)

    Article  Google Scholar 

  17. Wang, D.F., Ren, Y.Y., Liu, C.L., Han, P.: Identification of thermal process using Hammerstein model based on particle swarm optimization algorithm. In: Xing, S., Chen, S., Wei, Z., Xia, J. (eds.) Unifying Electrical Engineering and Electronics Engineering, pp. 1961–1968. Springer, New York (2014)

  18. Eskinat, E., Johnson, S.H., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE J. 37(2), 255–268 (1991)

    Article  Google Scholar 

  19. Ding, F., Liu, X., Chu, J.: Gradient-based and least-squares based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)

    Article  MathSciNet  Google Scholar 

  20. Li, G., Wen, C., Zheng, W.X., Chen, Y.: Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE Trans. Signal Process. 59(5), 2146–2159 (2011)

    Article  MathSciNet  Google Scholar 

  21. Chen, H., Ding, F.: Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems. Circuits Syst. Signal Process. 34(1), 61–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aslam, M.S., Raja, M.A.Z.: A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process. 107, 433–443 (2015)

    Article  Google Scholar 

  23. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)

    Article  MATH  Google Scholar 

  24. Valério, D., Ortigueira, M.D., da Costa, J.S.: Identifying a transfer function from a frequency response. J. Comput. Nonlinear Dyn. 3(2), 021207 (2008)

    Article  Google Scholar 

  25. Shah, S.M., Samar, R., Naqvi, S.M.R., Chambers, J.A.: Fractional order constant modulus blind algorithms with application to channel equalisation. Electron. Lett. 50(23), 1702–1704 (2014)

    Article  Google Scholar 

  26. Shyu, J.J., Pei, S.C., Chan, C.H.: An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process. 89(3), 320–327 (2009)

    Article  MATH  Google Scholar 

  27. Tseng, C.C., Lee, S.L.: Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain. Signal Process. 95, 111–125 (2014)

    Article  Google Scholar 

  28. Machado, J.T.: Fractional order describing functions. Signal Process. 107, 389–394 (2015). doi:10.1016/j.sigpro.2014.05.012

    Article  Google Scholar 

  29. Petráš, I.: Fractional-order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    Google Scholar 

  30. Ortigueira, M.D., Trujillo, J.J., Martynyuk, V.I., Coito, F.J.: A generalized power series and its application in the inversion of transfer functions. Signal Process. 107, 238–245 (2015)

    Article  Google Scholar 

  31. Geravanchizadeh, M., Ghalami Osgouei, S.: Speech enhancement by modified convex combination of fractional adaptive filtering. Iran. J. Electr. Electron. Eng. 10(4), 256–266 (2014)

    Google Scholar 

  32. Geravanchizadeh, M., Osgouei, S.G.: Dual-channel speech enhancement using normalized fractional least-mean squares algorithm. In: IEEE 19th Iranian Conference on Electrical Engineering (ICEE), 2011, pp. 1–5 (2011, May)

  33. Osgouei, S.G., Geravanchizadeh, M.: Speech enhancement using convex combination of fractional least-mean-squares algorithm. In: IEEE 5th International Symposium on Telecommunications (IST), 2010, pp. 869-872 (2010, December)

  34. Dubey, S.K., Rout, N.K.: FLMS algorithm for acoustic echo cancellation and its comparison with LMS. In: IEEE 1st International Conference on Recent Advances in Information Technology (RAIT), 2012, pp. 852–856 (2012, March)

  35. Shoaib, B., Qureshi, I.M.: Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin. Phys. B 23(5), 050503 (2014)

    Article  Google Scholar 

  36. Aslam, Muhammad Saeed: Comments on two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process. 117, 279–280 (2015)

    Article  Google Scholar 

  37. Aslam, Muhammad Saeed: Comments on design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process. 119, 169–173 (2016)

    Article  Google Scholar 

  38. Glentis, G., Berberidis, K., Theodoridis, S.: Efficient least squares adaptive algorithms for FIR transversal filtering. IEEE Signal Process. Mag. 16(4), 13–41 (1999)

    Article  Google Scholar 

  39. Widrow, B., Stearns, S.: Adaptive Signal Processing. Prentice Hall, Upper Saddle River, New Jersey (1985)

  40. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Upper Saddle River, New Jersey (1996)

    MATH  Google Scholar 

  41. Farden, D.: Stochastic approximation with correlated data. IEEE Trans. Inf. Theory IT–27(1), 105–113 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kouritzin, M.: On the convergence of linear stochastic approximation procedures. IEEE Trans. Inf. Theory IT–42, 1305–1309 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gardner, W.: Learning characteristics of Stochastic gradient descent algorithms: a general study, analysis, and critique. Signal Process. 6, 113–133 (1984)

    Article  MathSciNet  Google Scholar 

  44. Sethares, W.: The least mean square family. In: Kalouptsidis, N., Theodoridis, S. (eds.) Adaptive System Identification and Signal Processing Algorithms. Prentice-Hall, Upper Saddle River, New Jersey (1993)

    Google Scholar 

  45. Clark, G., Mitra, S., Parker, S.: Block implementation of adaptive digital filters. IEEE Trans. Circuits Syst. CAS–26(6), 584–592 (1981)

    Article  MATH  Google Scholar 

  46. Clark, G., Parker, S., Mitra, S.: A unified approach to time and frequency domain realization of FIR adaptive digital filters. IEEE Trans. Acoust. Speech Signal Process. ASSP–31(5), 1073–1083 (1983)

    Article  Google Scholar 

  47. Mikhael, W., Wu, F.: Fast algorithms for block FIR adaptive digital filtering. IEEE Trans. Circuits Syst. CAS–34(10), 1152–1160 (1987)

    Article  Google Scholar 

  48. Mikhael, W., Wu, F.: A fast block FIR adaptive digital filtering algorithm with individual adaptation of parameters. IEEE Trans. Circuits Syst. 36, 1–10 (1989)

    Article  MathSciNet  Google Scholar 

  49. Wang, T., Wang, C.: On the optimum design of the block adaptive FTR filter. IEEE Trans. Signal Process. 41(6), 2133–2140 (1994)

    Google Scholar 

  50. Wang, T., Wang, C.: Comments on “A fast block FIR adaptive digital filtering algorithm with individual adaptation of parameters”. IEEE Trans. Circuits Syst. II 39(4), 254–256 (1992)

    Article  Google Scholar 

  51. Ortigueira, M.D.: Introduction to fractional signal processing. Part I: continuous time systems. IEE Proc. Vis. Image Signal Process. 1, 62–70 (2000)

    Article  Google Scholar 

  52. Ortigueira, M.D.: Introduction to fractional signal processing. Part 2: discrete-time systems. IEE Proc. Vis. Image Signal Process. 1, 71–78 (2000)

    Article  Google Scholar 

  53. Ortigueira, M.D., Machado, J.T.: Fractional signal processing and applications. Signal Process. 83(11), 2285–2286 (2003)

    Article  Google Scholar 

  54. Ortigueira, M.D., Machado, J.T.: Fractional calculus applications in signals and systems. Signal Process. 86(10), 2503–2504 (2006)

    Article  MATH  Google Scholar 

  55. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  56. Anatoly, A.K., Hari, M.S., Juan, J.T.: Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204. Elsevier, New York (2006)

    Google Scholar 

  57. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers, vol. 84. Springer, Dordrecht (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.S., Chaudhary, N.I. & Raja, M.A.Z. A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn 87, 519–533 (2017). https://doi.org/10.1007/s11071-016-3058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3058-9

Keywords

Navigation