Skip to main content

Advertisement

Log in

On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A periodically forced linear oscillator with impact attachment has been studied. An asymptotical analytical method has been developed to obtain the fixed points and to analyze the transient 1:1 resonance (two impacts per cycle) of the modulated response. The influence of parameters on dynamics has been analyzed around the slow invariant manifold (SIM). Five different response regimes have been observed from theoretical and numerical results. It is demonstrated that they are closely related to the topological structure and relative position of fixed points. The bifurcation, route to chaos and the efficiency of targeted energy transfer (TET) with the variation of different parameters (i.e., amplitude and frequency of excitation, clearance, damping, mass ratio and restitution coefficient) have been investigated and well explained around SIM. Experimental results validate the existence of different regimes and different routes to chaos by the variation of the return map of time difference between consecutive impact moments. TET phenomenon has been analyzed for a strongly modulated response, and different cases of TET have been observed and analyzed. It is clearly observed that TET depends not only on whether there exists 1:1 resonance, but also on impulse strength during the transient resonance capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies. US Patent 989,958 (1911)

  2. Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117(B), 234–242 (1995)

    Article  Google Scholar 

  3. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254(3), 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  4. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 222(2), 77–134 (2008)

  5. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  6. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I: dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

  7. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: Part II: resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MATH  Google Scholar 

  8. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech 79(1), 011012 (2012)

    Article  Google Scholar 

  11. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)

    Article  MathSciNet  Google Scholar 

  12. Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175–200 (2011)

    Article  MATH  Google Scholar 

  13. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)

    Article  Google Scholar 

  14. Bellet, R., Cochelin, B., Côte, R., Mattei, P.O.: Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers. J. Sound Vib. 331(26), 5657–5668 (2012)

  15. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  16. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)

    Article  MATH  Google Scholar 

  17. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications, vol. 43. Springer Science & Business Media, Berlin (2009)

  18. Babitsky, V.I.: Theory of Vibro-Impact Systems and Applications. Springer Science & Business Media, Berlin (2013)

  19. Lieber, P., Jensen, D.P.: An acceleration damper: development, design and some applications. Trans. ASME 67(10), 523–530 (1945)

    Google Scholar 

  20. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Classification principles of types of mechanical systems with impacts—fundamental assumptions and rules. Eur. J. Mech. A Solids 23(3), 517–537 (2004)

    Article  MATH  Google Scholar 

  21. Bapat, C.N., Popplewell, N.: Several similar vibroimpact systems. J. Sound Vib. 113(1), 17–28 (1987)

    Article  Google Scholar 

  22. Masri, S.F., Caughey, T.K.: On the stability of the impact damper. J. Appl. Mech. 33(3), 586–592 (1966)

    Article  MathSciNet  Google Scholar 

  23. Popplewell, N., Bapat, C.N., McLachlan, K.: Stable periodic vibroimpacts of an oscillator. J. Sound Vib. 87(1), 41–59 (1983)

    Article  MATH  Google Scholar 

  24. Bapat, C.N., Popplewell, N., McLachlan, K.: Stable periodic motions of an impact-pair. J. Sound Vib. 87(1), 19–40 (1983)

    Article  MATH  Google Scholar 

  25. Peterka, F.: More detail view on the dynamics of the impact damper. Mech. Autom. Control Robot. 3(14), 907–920 (2003)

    MATH  Google Scholar 

  26. Sung, C.K., Yu, W.S.: Dynamics of a harmonically excited impact damper: bifurcations and chaotic motion. J. Sound Vib. 158(2), 317–329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yoshitake, Y., Harada, A., Kitayama, S., Kouya, K.: Periodic solutions, bifurcations, chaos and vibration quenching in impact damper. J. Syst. Des. Dyn. 1(1), 39–50 (2007)

    Google Scholar 

  28. Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Soliton Fractals 7(10), 1635–1647 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bapat, C.N., Sankar, S.: Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)

    Article  Google Scholar 

  30. Brown, G.V., North, C.M.: The Impact Damped Harmonic Oscillator in Free Decay (1987)

  31. Ekwaro-Osire, S., Nieto, E., Gungor, F., Gumus, E., Ertas, A.: Performance of a bi-unit damper using digital image processing. In: Ibrahim, R.A., Babitsky, V.I., Okuma, M. (eds.) Vibro-Impact Dynamics of Ocean Systems and Related Problems, pp. 79–90. Springer, Berlin (2009)

  32. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  34. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137(3), 031008 (2015)

    Article  Google Scholar 

  35. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  36. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Article  Google Scholar 

  37. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016)

    Article  Google Scholar 

  38. Pilipchuk, V.N.: Some remarks on non-smooth transformations of space and time for vibrating systems with rigid barriers. J. Appl. Math. Mech-USS 66(1), 31–37 (2002)

    Article  MATH  Google Scholar 

  39. Pilipchuk, V.N.: Closed-form solutions for oscillators with inelastic impacts. J. Sound Vib. 359, 154–167 (2015)

    Article  Google Scholar 

  40. Starosvetsky, Y., Manevitch, L.I.: Nonstationary regimes in a duffing oscillator subject to biharmonic forcing near a primary resonance. Phys. Rev. E 83(4), 046211 (2011)

    Article  Google Scholar 

  41. Korsch, H.J., Jodl, H.J., Hartmann, T.: Chaos: A Program Collection for the PC. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  42. Bapat, C.N.: The general motion of an inclined impact damper with friction. J. Sound Vib. 184(3), 417–427 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the French Ministry of Science and the Chinese Scholarship Council under Grant No. 201304490063 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Seguy, S. & Berlioz, A. On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn 87, 1453–1466 (2017). https://doi.org/10.1007/s11071-016-3127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3127-0

Keywords

Navigation