Skip to main content

Advertisement

Log in

Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is dedicated to exploit the same optimization mechanism of targeted energy transfer under different types of excitation. Specifically, a linear oscillator (LO) coupled with a vibro-impact nonlinear energy sink is analytically studied with an asymptotical method. The optimization mechanism under periodic excitation with a single frequency and under transient excitation is numerically obtained and experimentally validated for the first time. For periodic excitation, the boundary between the regime with two impacts per cycle and that of strongly modulated response (SMR) is proved to be optimal rather than SMR. The chaotic SMR is experimentally observed from the viewpoint of displacement of LO. The above-observed mechanism is further applied to explain the optimization mechanism under transient excitation and that under periodic excitation with a range of frequency. It is experimentally verified that the optimization of the latter can be simplified to the optimization under an excitation with a single resonance frequency. For transient excitation, the efficiency of different transient response regimes is experimentally compared, which agrees with the periodic results. Moreover, the efficiency comparison of different lengths of cavity is also experimentally validated. In short, the close relation of optimization under different excitations is clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 222(2), 77–134 (2008)

    Google Scholar 

  3. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25(1–3), 237–253 (2001)

    Article  MATH  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II: resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)

    Article  Google Scholar 

  6. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85, 893–911 (2016)

  7. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66(2), 648–679 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nguyen, T.A., Pernot, S.: Design criteria for optimally tuned nonlinear energy sinks—part 1: transient regime. Nonlinear Dyn. 69(1–2), 1–19 (2012)

    Article  Google Scholar 

  9. Manevitch, L.I., Gourdon, E., Lamarque, C.H.: Parameters optimization for energy pumping in strongly nonhomogeneous 2 DOF system. Chaos Solitons Fractals 31(4), 900–911 (2007)

    Article  Google Scholar 

  10. Manevitch, L.I., Gourdon, E., Lamarque, C.H.: Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system. J. Appl. Mech. 74(6), 1078–1086 (2007)

    Article  Google Scholar 

  11. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008)

    MATH  Google Scholar 

  12. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Phys. D 237(13), 1719–1733 (2008)

  13. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)

  14. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications, vol. 43. Springer, Berlin (2009)

  15. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  16. Nucera, F., Lo Iacono, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313(1), 57–76 (2008)

    Article  Google Scholar 

  17. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)

    Article  MATH  Google Scholar 

  18. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  19. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137(3), 031008 (2015)

    Article  Google Scholar 

  20. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  21. Brown, G.V.: Survey of impact damper performance. In (Army Aviation Systems Command, St. Louis, MO.) Sponsor: National Aeronautics and Space Administration, Washington, DC, p. 10 (1998)

  22. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. C J. Mech. 222(10), 1899–1908 (2008)

    Article  Google Scholar 

  23. Bapat, C.N., Sankar, S.: Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)

    Article  Google Scholar 

  24. Popplewell, N., Liao, M.: A simple design procedure for optimum impact dampers. J. Sound Vib. 146(3), 519–526 (1991)

    Article  Google Scholar 

  25. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3127-0

  26. Yoshitake, Y., Sueoka, A.: Quenching of self-excited vibrations by impact damper. In: Wiercigroch, M., deKraker, B. (eds.) Applied nonlinear dynamics and chaos of mechanical systems with discontinuities (World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 28.), pp. 155–176. World Sci. Publ., River Edge, NJ (2000)

  27. Pennisi, G., Stéphan, C., Michon, G.: Vibro-Impact NES: A Correlation Between Experimental Investigation and Analytical Description. Springer, Cham (2016)

    Google Scholar 

  28. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016)

    Article  Google Scholar 

  29. Pilipchuk, V.N.: Closed-form solutions for oscillators with inelastic impacts. J. Sound Vib. 359, 154–167 (2015)

    Article  Google Scholar 

  30. Masri, S., Caughey, T.: On the stability of the impact damper. J. Appl. Mech. 33(3), 586–592 (1966)

    Article  MathSciNet  Google Scholar 

  31. Bapat, C.N., Popplewell, N., McLachlan, K.: Stable periodic motions of an impact-pair. J. Sound Vib. 87(1), 19–40 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the French Ministry of Science and the Chinese Scholarship Council under Grant No. 201304490063 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Seguy, S. & Berlioz, A. Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn 87, 2415–2433 (2017). https://doi.org/10.1007/s11071-016-3200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3200-8

Keywords

Navigation