Skip to main content

Advertisement

Log in

Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the transient nonlinear dynamics and targeted energy transfer (TET) of a Bernoulli–Euler beam coupled to a continuous bistable nonlinear energy sink (NES). This NES comprises a cantilever beam with the partial constrained layer damping (PCLD) and an end mass controlled by a nonlinear magnetostatic interaction force. The theoretical model of the nonlinear system is built based on the Lagrange equations and assumed-modes expansion method. A new parameter system damping ratio is proposed to evaluate the TET efficiencies. Impact experiments are carried out to verify the theoretical model and mechanisms. The results show that the bistable NES can achieve high and strongly robust TET efficiencies under broad-range impacts. The shear modulus of the viscoelastic layer, the length of the PCLD and the end mass have significant influences on TET efficiencies. Analyses of the TET mechanisms in the bistable NES show the following: steady transition of the stable state is an important reason for maintaining high TET efficiencies; nonlinear beatings can occur in high-frequency, fundamental and long-period subharmonic branches; and resonance captures featuring fundamental and subharmonic also help achieve rapid energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Anubi, O.M., Crane III, C.D.: A new active variable stiffness suspension system using a nonlinear energy sink-based controller. Vehicle Syst. Dyn. 51(10), 1588–1602 (2013)

    Article  Google Scholar 

  2. Kremer, D., Liu, K.F.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333, 4859–4880 (2014)

    Article  Google Scholar 

  3. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., et al.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. IMechE. Part K J. Multi-Body Dyn. 222(2), 77–134 (2007)

    Google Scholar 

  4. Gourdon, E., Lamarque, C.H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50, 793–808 (2007)

    Article  MATH  Google Scholar 

  5. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  6. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324–332 (2001)

    Article  Google Scholar 

  7. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: Part II-resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  9. Lee, Y.S., et al.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46, 1371–1394 (2008)

    Article  Google Scholar 

  10. Sapsis, T.P., et al.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134, 011016 (2012)

    Article  Google Scholar 

  11. Quinn, D.D., et al.: Equivalent modal damping, stiffening and energy exchanges in multi degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng., Part K J. Multi-Body Dyn. 226(2), 122–146 (2012)

    Google Scholar 

  12. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011)

    Article  Google Scholar 

  13. Gendelman, O.V., Sigalov, G., Manevitch, L.I.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79, 011012 (2012)

    Article  Google Scholar 

  14. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  16. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. IMechE. J. Mech. Eng. Sci. 222, 1899–1908 (2008)

    Article  Google Scholar 

  17. Mohammad, A., Shudeifat, A.L.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1), 014502 (2014)

    Article  Google Scholar 

  18. Wierschem, N.E.: Targeted Energy Transfer Using Nonlinear Energy Sinks for the Attenuation of Transient Loads on Building Structures. Ph.D. thesis (2014)

  19. Mohammad, A., Shudeifat, A.L.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25, 053109 (2015)

    Article  MathSciNet  Google Scholar 

  21. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015)

    Article  Google Scholar 

  22. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2014)

    Article  Google Scholar 

  23. Manevitch, L.I.: The description of localized normal models in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farid, M., Gendelman, O.V.: Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control (2015). doi:10.1177/1077546315578561

  25. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  26. Jia, Y., Seshia, A.A.: Directly and parametrically excited bi-stable vibration energy harvester for broadband operation. Transducers (2013). doi:10.1109/Transducers.2013.6626801

  27. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable Systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  28. Tang, L.H., Yang, Y.W., Soh, C.K.: Improving functiona-lity of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. (2012). doi:10.1177/1045389X12443016

  29. Gao, Y.J., Leng, Y.G., Fan, S.B., Lai, Z.H.: Studies on vibration response and energy harvesting of elastic-supported bistable piezoelectric cantilever beams. Acta Phys. Sin. 63(9), 090501 (2014)

  30. Vokoun, D., Beleggia, M., Heller, L., Sittner, P.: Magne-tostatic interactions and forces between cylindrical permanent magnets. J. Magn. Magn. Mater. 321, 3758–3763 (2009)

    Article  Google Scholar 

  31. Vokoun, D., Beleggia, M., Heller, L.: Magnetic guns with cylindrical permanent magnets. J. Magn. Magn. Mater. 324, 1715–1719 (2012)

    Article  Google Scholar 

  32. Avvari, P.V., Tang, L.H., Yang, Y.W., Soh, C.K.: Enhan-cement of piezoelectric energy harvesting with multi-stable nonlinear vibrations. Proc. of SPIE (2013). doi:10.1117/12.2009560

  33. Jones, D.I.G., et al.: Handbook of Viscoelastic Vibration Damping. Wiley, Chichester (2001)

    Google Scholar 

  34. Edward, J., Kerwin, M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31(7), 952–962 (1959)

    Article  Google Scholar 

  35. Plunkett, R., Lee, C.T.: Length optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)

    Article  Google Scholar 

  36. Hou, S.W., Jiao, Y.H., Wang, X., Chen, Z.B., Fan, Y.B.: Optimization of plate with partial constrained layer damping treatment for vibration and noise reduction. Appl. Mech. Mater. 138–139, 20–26 (2012)

    Google Scholar 

  37. Ling, Z., Ronglu, X., Yi, W., El-Sabbagh, A.: Topology optimization of constrained layer damping on plates using method of moving asymptote (MMA) approach. Shock Vib. 18(1), 221–244 (2011)

    Article  Google Scholar 

  38. Kim, S.Y.: Topology Design Optimization for Vibration Reduction: Reducible Design Variable Method. Queen’s University, Kingston (2011)

    Google Scholar 

  39. Mead, D.J., Ae, D.C.: The effect of a damping compound on jet-efflux excited vibrations: an article in two parts presenting theory and results of experimental investigation. Part I. The structural damping due to the compound. Aircr. Eng. Aerosp. Technol. 32, 64–72 (1960)

    Article  Google Scholar 

  40. Mead, D.J.: A comparison of some equations for the flexural vibration of damped sandwich beams. J. Sound Vib. 83, 363–377 (1982)

    Article  MATH  Google Scholar 

  41. Shi, H.M., Huang, Q.B.: Vibration Systems: Analyzing, Modeling, Testing, Controlling. 3rd edn. Huazhong University of science and Technology Press (2014), in Chinese

Download references

Acknowledgements

This research was funded by the National Nature Science Foundation of China (Project Nos. 51405502 and 51275519). The authors would also like to acknowledge Associate Professor Yong Xiao and Doctor Xin Wang for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 503 KB)

Appendix

Appendix

The kinetic energies of different parts can be expressed as

$$\begin{aligned}&T_p =\frac{1}{2}\int _0^L {\left[ \rho _p A_p +\sum _i {m_{pi} \delta \left( x-L_{xi} \right) } \right] \left( {\frac{\partial y\left( x,t\right) }{\partial t}} \right) ^{2}{\text{ d }}x}\\&T_b =\frac{1}{2}\int _0^{L_b} {\rho _b A_b \left[ {\left( {\frac{\partial w_r }{\partial t}+{\dot{\varphi }}+x\frac{\partial ^{2}y\left( L_0, t\right) }{\partial x\partial t}} \right) ^{2}+\left( {\frac{\partial u_b }{\partial t}} \right) ^{2}} \right] {\text{ d }}x}\\&T_v +T_c =\frac{1}{2}\left( \rho _v A_v +\rho _c A_c \right) \\&\qquad \quad \qquad \cdot \int _{x_1 }^{x_2} {\left( {\frac{\partial w_r }{\partial t}+{\dot{\varphi }}+x\frac{\partial ^{2}y\left( L_0, t\right) }{\partial x\partial t}} \right) ^{2}{\text{ d }}x} \\&\qquad \quad \qquad +\, \frac{1}{2}\int _{x_1 }^{x_2} {\left( {\rho _v A_v \left( {\frac{\partial u_v }{\partial t}} \right) ^{2}+\rho _c A_c \left( {\frac{\partial u_c }{\partial t}} \right) ^{2}} \right) {\text{ d }}x} \\&T_m =\frac{1}{2}m_t \left( {\frac{\partial w_r \left( L_b, t\right) }{\partial t}+{\dot{\varphi }}+L_b \frac{\partial ^{2}y\left( L_0, t\right) }{\partial x\partial t}} \right) ^{2} \\&\qquad \quad +\,\frac{1}{2}m_t \left( {\frac{\partial u_b \left( L_b, t\right) }{\partial t}} \right) ^{2}+\frac{1}{2}J_t \left( {\frac{\partial ^{2}w_r \left( L_b, t\right) }{\partial x\partial t}} \right) ^{2} \\ \end{aligned}$$

where \(J_t\) is the end mass’s moment of inertia relative to the axis oz in Fig. 2b, \(J_t ={m_t R_1^2 }/4+{m_t d_1^2 }/{12}\).

Table 4 Parameters of restoring forces in Group 2
Table 5 Parameters for Group 3

The elements in the generalized mass matrix and generalized complex stiffness matrix are listed below.

$$\begin{aligned}&\mathbf{M}_{\mathrm{e}} =\left[ {{ \begin{array}{ccccc} {\mathbf{M}_{\phi \phi } +\mathbf{M}_{c\phi \phi }}&{} {\mathbf{M}_{\phi \eta }}&{} 0&{} 0 \\ {\mathbf{M}_{\phi \eta }^\mathrm{T}}&{} {\mathbf{M}_{\eta \eta }}&{} {\mathbf{M}_{\eta \xi }}&{} {\mathbf{M}_{\eta \alpha }} \\ 0&{} {\mathbf{M}_{\eta \xi }^\mathrm{T}}&{} {\mathbf{M}_{\xi \xi }}&{} {\mathbf{M}_{\xi \alpha }} \\ 0&{} {\mathbf{M}_{\eta \alpha }^\mathrm{T}}&{} {\mathbf{M}_{\xi \alpha }^\mathrm{T}}&{} {\mathbf{M}_{\alpha \alpha }} \\ \end{array}}} \right] \\&\mathbf{K}_{\mathrm{e}} =\left[ {{ \begin{array}{ccccc} {\mathbf{K}_{\phi \phi }}&{} {\mathbf{K}_{\phi \eta }}&{} 0&{} 0 \\ {\mathbf{K}_{\phi \eta }^\mathrm{T}}&{} {\mathbf{K}_{\eta \eta }}&{} {\mathbf{K}_{\eta \xi }}&{} {\mathbf{K}_{\eta \alpha }} \\ 0&{} {\mathbf{K}_{\eta \xi }^\mathrm{T}}&{} {\mathbf{K}_{\xi \xi }}&{} {\mathbf{K}_{\xi \alpha }} \\ 0&{} {\mathbf{K}_{\eta \alpha }^\mathrm{T}}&{} {\mathbf{K}_{\xi \alpha }^\mathrm{T}}&{} {\mathbf{K}_{\alpha \alpha }} \\ \end{array}}} \right] \end{aligned}$$
$$\begin{aligned}&M_{\phi \phi , ij} =\int _0^L {\rho _p A_p Y_i Y_j} {\text{ d }}x+\sum _k {m_{pk} Y_i (L_k )Y_j (L_k )}, \\&\quad i,j=1,2\ldots n_p \\&M_{c\phi \phi , ij} =\int _0^{L_b} {\rho _b A_b [Y_i (L_0 )+xY_i^{\prime }(L_0 )]} \\&\quad \cdot \, [Y_j (L_0 )+xY_j^{\prime }(L_0 )]dx+(\rho _c A_c +\rho _v A_v ) \\&\quad \cdot \int _{x_1 }^{x_2} {[Y_i (L_0 )+xY_i^{\prime }(L_0 )][Y_j (L_0 )+xY_j^{\prime }(L_0 )]} {\text{ d }}x \\&\quad +\, m_t [Y_i (L_0 )+L_b Y_i^{\prime }(L_0 )][Y_j (L_0 )+L_b Y_j^{\prime }(L_0 )], \\&\quad i,j=1,2\ldots n_p \\ \end{aligned}$$
$$\begin{aligned}&\begin{array}{l} M_{\phi \eta , ij} =\displaystyle \int _0^{L_b} {\rho _b A_b [Y_i (L_0 )+xY_i^{\prime }(L_0 )]W_{rj} (x)} {\text{ d }}x \\ \quad +\displaystyle \int _{x_1 }^{x_2} {(\rho _v A_v +\rho _c A_c )[Y_i (L_0 )+\,xY_i^{\prime }(L_0 )]W_{rj} (x){\text{ d }}x} \\ \quad +\, m_t [Y_i (L_0 )+L_b Y_i^{\prime }(L_0 )]W_{rj} (L_b ), \\ \quad i=1,2\ldots n_p, j=1,2\ldots n_w \\ \end{array}\\&M_{\eta \eta , ij} =\int _0^{L_b} {\rho _b A_b W_{ri} W_{rj} {\text{ d }}x}\\&\quad +\int _{x_1 }^{x_2} {(\rho _v A_v +\rho _c A_c )W_{ri} W_{rj} {\text{ d }}x} \\&\quad \cdot \int _{x_1 }^{x_2} {\rho _v A_v \frac{(h_c -h_b )^{2}}{16}{W}_{ri}^{\prime } {W}_{rj}^{\prime } {\text{ d }}x} \\&\quad +\, m_t W_{ri} (L_b )W_{rj} (L_b )+J_t {W}_{ri}^{\prime } (L_b ){W}_{rj}^{\prime } (L_b ),\; \\&\quad i,j=1,2\ldots n_w \\&M_{\eta \xi , ij} =\frac{1}{8}\int _{x_1 }^{x_2} {\rho _v A_v (h_c -h_b ){W}_{ri}^{\prime } U_{bj} {\text{ d }}x}, \\&\quad i=1,2\ldots n_w, j=1,2\ldots n_b \\&M_{\eta \alpha , ij} =\frac{1}{8}\int _{x_1 }^{x_2} {\rho _v A_v (h_c -h_b ){W}_{ri}^{\prime } U_{cj} {\text{ d }}x,\quad } \\&\quad i=1,2\ldots n_w, j=1,2\ldots n_c \\&M_{\xi \xi , ij} =\int _0^{L_b} {\rho _b A_b U_{bi} U_{bj} {\text{ d }}x} \\&\quad +\, \frac{1}{4}\int _{x_1 }^{x_2} {\rho _v A_v U_{bi} U_{bj} {\text{ d }}x} +m_t U_{bi} (L_b )U_{bj} (L_b ), \\&\quad i,j=1,2\ldots n_b \\&M_{\xi \alpha , ij} =\frac{1}{4}\int _{x_1 }^{x_2} {\rho _v A_v U_{bi} U_{cj} {\text{ d }}x}, \\&\quad i=1,2\ldots n_b, j=1,2\ldots n_c \\ \end{aligned}$$
$$\begin{aligned}&M_{\alpha \alpha , ij} =\int _{x_1 }^{x_2} {\left( \rho _c A_c +\frac{1}{4}\rho _v A_v \right) U_{ci} U_{cj} {\text{ d }}x}, \\&\quad i,j=1,2\ldots n_c K_{\phi \phi , ij} =\int _0^L {E_p I_p Y_i^{\prime \prime }Y_j^{\prime \prime }} {\text{ d }}x\\&\quad -\,\beta _1 \left( Y_{\Delta i} +L_b {Y}_{i}^{\prime } \right) \left( Y_{\Delta j} +L_b {Y}_{j}^{\prime } \right) ,\; \\&\quad i,j=1,2\ldots n_p \\&K_{\phi \eta , ij} =-\beta _1 \left( Y_{\Delta i} +L_b {Y}_{i}^{\prime } \right) W_{rj} (L_b ), \\&\quad i=1,2\ldots n_p, j=1,2\ldots n_w \\&K_{\eta \eta , ij} =\int _0^{L_b} {E_b I_b {W}_{ri}^{\prime \prime } {W}_{rj}^{\prime \prime }} {\text{ d }}x+\int _{x_1 }^{x_2} {E_c I_c {W}_{ri}^{\prime \prime } {W}_{rj}^{\prime \prime }} {\text{ d }}x \\&\quad +\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }h_t^2 {W}_{ri}^{\prime } {W}_{rj}^{\prime }} {\text{ d }}x-\beta _1 W_{ri} (L_b )W_{rj} (L_b ),\; \\&\quad i,j=1,2\ldots n_w \\&K_{\eta \xi , ij} =-\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }h_t {W}_{ri}^{\prime } U_{bj}} {\text{ d }}x, \\&\quad i=1,2\ldots n_w, j=1,2\ldots n_b \\&K_{\eta \alpha , ij} =\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }h_t {W}_{ri}^{\prime } U_{cj}} {\text{ d }}x,\\&\quad i=1,2\ldots n_w, j=1,2\ldots n_c \\&K_{\xi \xi , ij} =\int _0^{L_b} {E_b A_b {U}_{bi}^{\prime } {U}_{bj}^{\prime }} {\text{ d }}x+\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }U_{bi} U_{bj}} {\text{ d }}x,\; \\&\quad i,j=1,2\ldots n_b \\&K_{\xi \alpha , ij} =-\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }U_{bi} U_{cj}} {\text{ d }}x, \\&\quad i=1,2\ldots n_b, j=1,2\ldots n_c \\&K_{\alpha \alpha , ij} =\int _{x_1 }^{x_2} {E_c A_c {U}_{ci}^{\prime } {U}_{cj}^{\prime }} {\text{ d }}x+\int _{x_1 }^{x_2} {\frac{G_v A_v }{h_v^2 }U_{ci} U_{cj}} {\text{ d }}x, \\&\quad i,j=1,2\ldots n_c \end{aligned}$$
$$\begin{aligned}&P_i =\left\{ {\begin{array}{l} (Y_{\Delta i} +L_b {Y}_i^{\prime } )\quad \quad \quad for\;\;\;i=1,2\ldots n_p \\ W_{ri} (L_b )\quad \;for\;\;\;i=n_p +1,\ldots n_p +n_w \\ 0\quad \quad others \\ \end{array}} \right. \\&\mathbf{M}_{\mathrm{n}} =\left[ {{ \begin{array}{ccc} {\mathbf{M}_{\eta \eta }}&{} {\mathbf{M}_{\eta \xi }}&{} {\mathbf{M}_{\eta \alpha }} \\ {\mathbf{M}_{\eta \xi }^\mathrm{T}}&{} {\mathbf{M}_{\xi \xi }}&{} {\mathbf{M}_{\xi \alpha }} \\ {\mathbf{M}_{\eta \alpha }^\mathrm{T}}&{} {\mathbf{M}_{\xi \alpha }^\mathrm{T}}&{} {\mathbf{M}_{\alpha \alpha }} \\ \end{array}}} \right] , \\&\mathbf{K}_{\mathrm{n}} =\left[ {{ \begin{array}{ccc} {\mathbf{K}_{\eta \eta }}&{} {\mathbf{K}_{\eta \xi }}&{} {\mathbf{K}_{\eta \alpha }} \\ {\mathbf{K}_{\eta \xi }^\mathrm{T}}&{} {\mathbf{K}_{\xi \xi }}&{} {\mathbf{K}_{\xi \alpha }} \\ {\mathbf{K}_{\eta \alpha }^\mathrm{T}}&{} {\mathbf{K}_{\xi \alpha }^\mathrm{T}}&{} {\mathbf{K}_{\alpha \alpha }} \\ \end{array}}} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wen, J., Yin, J. et al. Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn 87, 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3220-4

Keywords

Navigation