Skip to main content

Advertisement

Log in

Sommerfeld effect in a gyroscopic overhung rotor-disk system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Deflection of a rotor-disk at the free end of a flexible overhung rotor-shaft causes rotation about diametral axis and consequently leads to a strong gyroscopic coupling in a spinning overhung rotor system. When the rotor is spun up about its axis, the unbalance in the rotor-disk causes transverse and rotational vibrations to increase as the spin speed approaches the critical speed of the rotor. These transverse and rotational vibrations dissipate a lot of energy, and if the rotor is driven through a non-ideal drive, i.e., a motor which can supply a limited amount of power, then the entire motor power may be spent to account for the energy dissipation. As a result, the rotor speed may get stuck in resonance at the critical speed or jump through the critical speed to a much higher speed with lower transverse and rotational vibration levels. These symptoms, normally referred to as the Sommerfeld effect, occur due to the intrinsic energetic coupling between the drive and the driven systems and are important design considerations for development of various rotating machinery with flexible rotor-shafts or supports (bearings). Sommerfeld effect in a strongly gyroscopic rotor dynamic system is studied in this article. The dynamics of an overhung rotor system near the regimes of Sommerfeld effect is studied by using a discrete and a continuous shaft-rotor model coupled with the model of the non-ideal motor drive. The models are developed using multi-energy domain modeling approach in bond graph model form. A steady-state analysis of power transfer mechanism is used to postulate the ideal characteristics of Sommerfeld effect in the neighborhood of the critical speed, and thereafter, full transient analysis is performed with aid of the bond graph model-generated coupled equations of motion to validate the postulated characteristics of the Sommerfeld effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Yoon, S.Y., Lin, Z., Allaire, P.E.: Control of Surge in Centrifugal Compressors by Active Magnetic Bearings. Springer, London (2013)

    Book  Google Scholar 

  2. Dimentberg, M.F., McGovern, L., Norton, R.L., Chapdelaine, J., Harrison, R.: Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13, 171–187 (1997)

    Article  MATH  Google Scholar 

  3. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48(1), 21–36 (2010)

    Article  Google Scholar 

  4. Zhang, X., Kong, X., Wen, B., Zhao, C.: Numerical and experimental study on synchronization of two exciters in a nonlinear vibrating system with multiple resonant types. Nonlinear Dyn. 82, 987–999 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhang, X., Wen, B., Zhao, C.: Theoretical study on synchronization of two exciters in a nonlinear vibrating system with multiple resonant types. Nonlinear Dyn. (2015). doi:10.1007/s11071-016-2674-8

  6. Quinn, D.D.: Resonant dynamics in a rotordynamic system with nonlinear inertial coupling and shaft anisotropy. Nonlinear Dyn. 57(4), 623–633 (2009)

    Article  MATH  Google Scholar 

  7. Sommerfeld, A.: Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe. Phys. Z. 3, 266–286 (1902)

    MATH  Google Scholar 

  8. Ryzhik, A., Amer, T., Duckstein, H., Sperling, L.: Zum Sommerfeldeffect beim selbsttätigen Auswuchten in einer Ebene. Tech. Mech. 21(4), 297–312 (2001)

    Google Scholar 

  9. Munteanu, L., Brisan, C., Chiroiu, V., Dumitriu, D., Ioan, R.: Chaos–hyperchaos transition in a class of models governed by Sommerfeld effect. Nonlinear Dyn. 78, 1877–1889 (2014)

    Article  MathSciNet  Google Scholar 

  10. Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)

    Book  Google Scholar 

  11. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  12. Kononenko, V.O.: Vibrating Systems with Limited Excitation. Nauka, Moscow (1964). (in Russian)

    Google Scholar 

  13. Timoshenko, S.: Vibration Problems in Engineering. Van Nostrand, Princeton (1961)

    MATH  Google Scholar 

  14. Alifov, A.A., Frolov, K.V.: Interaction of Non-linear Oscillatory Systems with Energy Sources. Taylor & Francis, London (1990)

    MATH  Google Scholar 

  15. Balthazar, J.M., Mook, D.T., Weber, H.I., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An Overview on Non-Ideal Vibrations. Meccanica 38, 613–621 (2003)

    Article  MATH  Google Scholar 

  16. Samantaray, A.K.: On the non-linear phenomena due to source loading in rotor–motor systems. Proc. Inst. Mech. E Part C: J. Mech. Eng. Sci. 223(4), 809–818 (2009)

    Article  Google Scholar 

  17. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Modelling of basic induction motors and source loading in rotor–motor systems with regenerative force field. Simul. Pract. Theory 7(5), 563–576 (1999)

    Article  Google Scholar 

  18. Samantaray, A.K.: Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56(4), 443–451 (2009)

    Article  MATH  Google Scholar 

  19. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Bond graph modeling of an internally damped nonideal flexible spinning shaft. J. Dyn. Syst. Meas. Control 132(6) (2010). doi:10.1115/1.4002483

  20. Gunter, E.J.: Forward and Backward Critical Speeds and Forced Response of an Overhung Rotor with Asymmetrical Bearing Support. Department of Mechanical and Aerospace, University of Virginia (1993). http://dyrobes.com/wp-content/uploads/2015/10/for_backmodesoverhungrotor_linked.pdf

  21. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley, Hoboken (2006)

    Google Scholar 

  22. Borutzky, W.: Bond Graph Methodology Development and Analysis of Multidisciplinary Dynamic System Models. Springer, Berlin (2010)

    Google Scholar 

  23. Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B.: Intelligent Mechatronic Systems: Modeling, Control and Diagnosis. Springer, Berlin (2012)

    Google Scholar 

  24. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Bond Graph in Modeling, Simulation and Fault Identification. CRC Press, Boca Raton (2012)

  25. Awrejcewicz, J., Starosta, R., Sypniewska-Kaminska, G.: Decomposition of governing equations in the analysis of resonant response of a nonlinear and non-ideal vibrating system. Nonlinear Dyn. 82, 299–309 (2015)

    Article  Google Scholar 

  26. Bhattacharyya, R., Mukherjee, A., Samantaray, A.K.: Harmonic oscillations of non-conservative, asymmetric, two-degree-of-freedom systems. J. Sound Vib. 264, 973–980 (2004)

    Article  Google Scholar 

  27. Bou-Rabee, N.M., Marsden, J.E., Romero, L.A.: Tippe top inversion as a dissipation-induced instability. SIAM J. Appl. Dyn. Syst. 3(3), 352–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krechetnikov, R., Marsden, J.E.: On destabilizing effects of two fundamental non-conservative forces. Phys. D 214, 25–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dasgupta, S.S., Samantaray, A.K., Bhattacharyya, R.: Stability of an internally damped non-ideal flexible spinning shaft. Int. J. Non-linear Mech. 45(3), 286–293 (2010)

    Article  Google Scholar 

  30. Filippov, A.P.: Vibrations of Mechanical systems. National Lending Library for Science and Technology, Boston Spa (1971)

    Google Scholar 

  31. Mukherjee, A., Rastogi, V., Dasgupta, A.: Extension of Lagrangian–Hamiltonian mechanics for continuous systems—investigation of dynamics of a one-dimensional internally damped rotor driven through a dissipative coupling. Nonlinear Dyn. 58(1–2), 107–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karthikeyan, M., Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect characterisation in rotors with non-ideal drive from ideal drive response and power balance. Mech. Mach. Theory 91, 269–288 (2015)

    Article  Google Scholar 

  33. Samantaray, A.K., Bhattacharyya, R., Mukherjee, A.: On the stability of Crandall gyropendulum. Phys. Lett. A Gen. At. Solid State Phys. 372(3), 238–243 (2008)

    MATH  Google Scholar 

  34. Samantaray, A.K., Bhattacharyya, R., Mukherjee, A.: An investigation into the physics behind the stabilizing effects of two-phase lubricants in journal bearings. J. Vib. Control 12(4), 425–442 (2006)

    Article  MATH  Google Scholar 

  35. Sugiyama, Y., Langthjem, M.A.: Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems. Int. J. Non-linear Mech. 42, 132–145 (2007)

    Article  Google Scholar 

  36. Kirillov, O.N., Verhulst, F.: Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Z. Angew. Math. Mech. 90(6), 462–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Alford, J.S.: Protecting turbomachinery from self-excited rotor whirl. J. Eng. Gas Turbines Power 87(4), 333–343 (1965)

    Article  Google Scholar 

  38. Genta, G.: Vibration of Structures and Machines. Springer, New York (1998)

    Google Scholar 

  39. Shahgholi, M., Khadem, S.E.: Hopf bifurcation analysis of asymmetrical rotating shafts. Nonlinear Dyn. 77, 1141–1155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hosseini, S.A.A.: Dynamic stability and bifurcation of a nonlinear in-extensional rotating shaft with internal damping. Nonlinear Dyn. 74, 345–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Samantaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisoi, A., Samantaray, A.K. & Bhattacharyya, R. Sommerfeld effect in a gyroscopic overhung rotor-disk system. Nonlinear Dyn 88, 1565–1585 (2017). https://doi.org/10.1007/s11071-017-3329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3329-0

Keywords

Navigation