Skip to main content
Log in

Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, nonlinear dynamics of an unbalanced composite spinning shaft are studied. Extensional–flexural–flexural–torsional equations of motion are derived via utilizing the three-dimensional constitutive relations of the material and Hamilton’s principle. The gyroscopic effects, rotary inertia and coupling due to material anisotropy are included, while the shear deformation is neglected. To analyze the rotor dynamic behavior, the full form of the equations without any simplification assumption (e.g., stretching or shortening assumption) is used. The method of multiple scales is applied to the discretized equations. An analytical expression as a function of the system parameters describing the forced vibration of a spinning composite shaft in the neighborhood of the primary resonance is obtained. The discretization is done with both one and two modes, and the results are compared. It is shown that although the excitation is tuned in the neighborhood of the first mode, one-mode discretization is not sufficient and it leads to inaccurate results. It shows the necessity of employing at least two modes in discretization due to the coupling in the equations. The effects of the external damping, eccentricity and the lamination angle on the vibration amplitude are investigated. In addition, the effect of the extensional–torsional coupling on the frequency response curves is investigated. To validate the perturbation results, numerical simulation is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(a_{f1}\) :

Amplitude of forward motion

\(a_{f2}\) :

Amplitude of backward motion

\(a_{ki} (i=1,2)\) :

Amplitude of longitudinal motion

\(a_{gi} (i=1,2)\) :

Amplitude of angular motion

\(A_{11}\) :

Longitudinal stiffness

\(B_{16}\) :

Extensional–torsional coupling term

C :

External damping coefficient

\(D_{11} ,D_{66}\) :

Flexural and torsional stiffness

e :

Strain along the shaft centerline

\(e_z ,e_y\) :

Eccentricity distribution with respect to the y- and z-axes

\(I_1 ,I_\mathrm{p}\) :

Polar mass moment of inertia of the shaft

\(I_2\) :

Diametrical mass moment of inertia of the shaft

\(I_0 ,m\) :

Mass per unit length of the shaft

l :

Length of the shaft

\(r_i ,r_{i+1}\) :

Inner and outer radii of the ith layer of laminate

u :

Longitudinal displacement

vw :

Transverse displacements

Q :

Laminate stiffness matrix

\(\bar{{Q}}\) :

Lamina stiffness matrix

\(\phi \) :

Torsional deformation angle

\(\rho \) :

Density of the ith layer of laminate

\(\omega _i , i=1-3\) :

Angular velocities of the local frame

\(\Omega \) :

Spinning speed

References

  1. Zinberg, H., Symonds, M.F.: The development of an advanced composite tail rotor driveshaft. In: 26th Annual National Forum of the American Helicopter Society, Washington, DC, pp. 16–18 (1970)

  2. dos Reis, H.L., Goldman, R.B., Verstrate, P.H.: Thin-walled laminated composite cylindrical tubes: part III—bending analysis. J. Compos. Technol. Res. 9(2), 58–62 (1987)

    Article  Google Scholar 

  3. Ruhl, R.L., Booker, J.F.: A finite element model for distributed parameter turborotor systems. J. Eng. Ind. 94(1), 126–132 (1972)

    Article  Google Scholar 

  4. Bert, C.W.: The effect of bending-twisting coupling on the critical speed of a driveshaft. In: Japan-U. S. Conference on Composite Materials, 6th, Orlando, FL, pp. 29–36 (1993)

  5. Kim, C.D., Bert, C.W.: Critical speed analysis of laminated composite, hollow drive shafts. Compos. Eng. 3(7), 633–643 (1993)

    Article  Google Scholar 

  6. Bert, C.W., Kim, C.D.: Whirling of composite-material driveshafts including bending-twisting coupling and transverse shear deformation. J. Vib. Acoust. 117(1), 17–21 (1995)

    Article  Google Scholar 

  7. Singh, S.P., Gupta, K.: Composite shaft rotordynamic analysis using a layerwise theory. J. Sound Vib. 191(5), 739–756 (1996)

    Article  Google Scholar 

  8. Chen, L.W., Peng, W.K.: Dynamic stability of rotating composite shafts under periodic axial compressive loads. J. Sound Vib. 212(2), 215–230 (1998)

    Article  Google Scholar 

  9. Song, O., Jeong, N.H., Librescu, L.: Implication of conservative and gyroscopic forces on vibration and stability of an elastically tailored rotating shaft modeled as a composite thin-walled beam. J. Acoust. Soc. Am. 109(3), 972–981 (2001)

    Article  Google Scholar 

  10. Chang, M.Y., Chen, J.K., Chang, C.Y.: A simple spinning laminated composite shaft model. Int. J. Solids Struct. 41(3), 637–662 (2004)

    Article  MATH  Google Scholar 

  11. Chang, C.Y., Chang, M.Y., Huang, J.H.: Vibration analysis of rotating composite shafts containing randomly oriented reinforcements. Compos. Struct. 63(1), 21–32 (2004)

    Article  Google Scholar 

  12. Banerjee, J.R., Su, H.: Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. Comput. Struct. 84(19), 1208–1214 (2006)

    Article  Google Scholar 

  13. Sino, R., Baranger, T.N., Chatelet, E., Jacquet, G.: Dynamic analysis of a rotating composite shaft. Compos. Sci. Technol. 68(2), 337–345 (2008)

    Article  Google Scholar 

  14. Badie, M.A., Mahdi, E., Hamouda, A.M.S.: An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Mater. Des. 32(3), 1485–1500 (2011)

    Article  Google Scholar 

  15. Montagnier, O., Hochard, C.: Optimisation of hybrid high-modulus/high-strength carbon fibre reinforced plastic composite drive shafts. Mater. Des. 46, 88–100 (2013)

    Article  Google Scholar 

  16. Montagnier, O., Hochard, C.: Dynamics of a supercritical composite shaft mounted on viscoelastic supports. J. Sound Vib. 333(2), 470–484 (2014)

    Article  Google Scholar 

  17. Yongsheng, R., Qiyi, D., Xingqi, Z.: Modeling and dynamic analysis of rotating composite shaft. J. Vibroeng. 15(4), (1089) (2013)

  18. Wang, Y.Q.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77(4), 1693–1707 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ren, Y., Zhang, Y., Dai, Q., Zhang, X.: Primary resonance of a rotating composite shaft with geometrical nonlineary. J. Vibroeng. 17(4), 1694–1706 (2015)

  20. Hosseini, S.A.A., Khadem, S.E.: Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech. Mach. Theory 44(1), 272–288 (2009)

    Article  MATH  Google Scholar 

  21. Hosseini, S.A.A., Khadem, S.E.: Combination resonances in a rotating shaft. Mech. Mach. Theory 44(8), 1535–1547 (2009)

    Article  MATH  Google Scholar 

  22. Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Primary resonances of a nonlinear in-extensional rotating shaft. Mech. Mach. Theory 45(8), 1067–1081 (2010)

    Article  MATH  Google Scholar 

  23. Shahgholi, M., Khadem, S.E.: Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity. Mech. Mach. Theory 51, 131–144 (2012)

    Article  Google Scholar 

  24. Hosseini, S.A.A., Zamanian, M.: Multiple scales solution for free vibrations of a rotating shaft with stretching nonlinearity. Sci. Iran. 20(1), 131–140 (2013)

    Article  Google Scholar 

  25. Pai, P.F., Qian, X., Du, X.: Modeling and dynamic characteristics of spinning Rayleigh beams. Int. J. Mech. Sci. 68, 291–303 (2013)

    Article  Google Scholar 

  26. Hosseini, S.A.A.: Dynamic stability and bifurcation of a nonlinear in-extensional rotating shaft with internal damping. Nonlinear Dyn. 74(1–2), 345–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hosseini, S.A.A., Zamanian, M., Shams, S., Shooshtari, A.: Vibration analysis of geometrically nonlinear spinning beams. Mech. Mach. Theory 78, 15–35 (2014)

    Article  Google Scholar 

  28. Shahgholi, M., Khadem, S.E.: Hopf bifurcation analysis of asymmetrical rotating shafts. Nonlinear Dyn. 77(4), 1141–1155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, K., Chung, J.: Nonlinear lateral vibrations of a deploying Euler–Bernoulli beam with a spinning motion. Int. J. Mech. Sci. 90, 200–212 (2015)

    Article  Google Scholar 

  30. Wang, Y.Q., Guo, X.H., Li, Y.G., Li, J.: Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. J. Sound Vib. 329(3), 338–352 (2010)

    Article  Google Scholar 

  31. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part I: numerical solution. Int. J. Mech. Sci. 52(9), 1217–1224 (2010)

    Article  Google Scholar 

  32. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part II: approximate analytical solution. Int. J. Mech. Sci. 52(9), 1208–1216 (2010)

    Article  Google Scholar 

  33. Wang, Y., Liang, L., Guo, X., Li, J., Liu, J., Liu, P.: Nonlinear vibration response and bifurcation of circular cylindrical shells under traveling concentrated harmonic excitation. Acta Mech. Solida Sin. 26(3), 277–291 (2013)

    Article  Google Scholar 

  34. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332(24), 6434–6450 (2013)

    Article  Google Scholar 

  35. Hosseini, S.A.A.: Nonlinear Vibration and Stability Analysis of Rotating Shafts, PhD Thesis, Tarbiat Modares University (in Persian) (2008)

  36. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  37. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  38. Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)

    Google Scholar 

  39. Shabanalinezhad, H.: Nonlinear Dynamic Analysis of Composite Shafts, MSc Thesis, Kharazmi University (in Persian) (2015)

  40. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Hosseini.

Appendices

Appendix 1

$$\begin{aligned} \left\{ {\begin{array}{l} \sigma _{11} \\ \sigma _{22} \\ \sigma _{33} \\ \tau _{23} \\ \tau _{31} \\ \tau _{12} \\ \end{array}} \right\}= & {} \left[ {{\begin{array}{cccccc} {Q_{11} }&{} {Q_{12} }&{} {Q_{13} }&{} 0&{} 0&{} 0 \\ {Q_{12} }&{} {Q_{22} }&{} {Q_{23} }&{} 0&{} 0&{} 0 \\ {Q_{13} }&{} {Q_{23} }&{} {Q_{33} }&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} {Q_{44} }&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} {Q_{55} }&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} {Q_{66} } \\ \end{array} }} \right] \left\{ {\begin{array}{l} \varepsilon _{11} \\ \varepsilon _{22} \\ \varepsilon _{33} \\ \gamma _{23} \\ \gamma _{31} \\ \gamma _{12} \\ \end{array}} \right\} \\ \left\{ {\begin{array}{l} \sigma _{xx} \\ \sigma _{\theta \theta } \\ \sigma _{rr} \\ \tau _{r\theta } \\ \tau _{xr} \\ \tau _{x\theta } \\ \end{array}} \right\}= & {} \left[ {{\begin{array}{cccccc} {\overline{Q} _{11} }&{} {\overline{Q} _{12} }&{} {\overline{Q} _{13} }&{} 0&{} 0&{} {\overline{Q} _{16} } \\ {\overline{Q} _{12} }&{} {\overline{Q} _{22} }&{} {\overline{Q} _{23} }&{} 0&{} 0&{} {\overline{Q} _{26} } \\ {\overline{Q} _{13} }&{} {\overline{Q} _{23} }&{} {\overline{Q} _{33} }&{} 0&{} 0&{} {\overline{Q} _{36} } \\ 0&{} 0&{} 0&{} {\overline{Q} _{44} }&{} {\overline{Q} _{45} }&{} 0 \\ 0&{} 0&{} 0&{} {\overline{Q} _{45} }&{} {\overline{Q} _{55} }&{} 0 \\ {\overline{Q} _{16} }&{} {\overline{Q} _{26} }&{} {\overline{Q} _{36} }&{} 0&{} 0&{} {\overline{Q} _{66} } \\ \end{array} }} \right] \left\{ {\begin{array}{l} \varepsilon _{xx} \\ \varepsilon _{\theta \theta } \\ \varepsilon _{rr} \\ \gamma _{r\theta } \\ \gamma _{xr} \\ \gamma _{x\theta } \\ \end{array}} \right\} \\ \left[ {\bar{{Q}}} \right]= & {} \left[ T \right] ^{-1}\left[ Q \right] \left[ T \right] ^{-T} \end{aligned}$$

where \(\bar{{Q}}\) is the stiffness matrix of the layer in which

$$\begin{aligned} \left[ T \right]= & {} \left[ {{\begin{array}{cccccc} {m^{2}}&{} {n^{2}}&{} 0&{} 0&{} 0&{} {2mn} \\ {n^{2}}&{} {m^{2}}&{} 0&{} 0&{} 0&{} {-2mn} \\ 0&{} 0&{} 1&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} m&{} {-n}&{} 0 \\ 0&{} 0&{} 0&{} n&{} m&{} 0 \\ {-mn}&{} {mn}&{} 0&{} 0&{} 0&{} {m^{2}-n^{2}} \\ \end{array} }} \right] \\ m= & {} \cos \eta , n=\sin \eta \end{aligned}$$

where \(\eta \) is shown in Fig. 1.

$$\begin{aligned} Q_{11}= & {} \frac{E_1 }{1-\frac{\nu _{12}^2 E_2 }{E_1 }}, Q_{12} =\frac{E_2 \nu _{12} }{1-\frac{\nu _{12}^2 E_2 }{E_1 }},\\ Q_{22}= & {} \frac{E_2 }{1-\frac{\nu _{12}^2 E_2 }{E_1 }}, Q_{44} =G_{23} , Q_{55} =G_{13} , \\ Q_{66}= & {} G_{12} ,Q_{13} =Q_{23} =Q_{33} =0 \end{aligned}$$

Appendix 2

Derivation of equations of motion

Kinetic energy

$$\begin{aligned} T= & {} \frac{1}{2}I_0 \left( {\left( {\frac{\partial }{\partial t}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial t}v(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial t}w(s,t)} \right) ^{2}} \right) \\&+\frac{1}{2}\frac{I_2 \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) }{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}\left( {1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}} \right) }\\&+\frac{1}{2}\frac{I_2 \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}w(s,t)}{\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}-\frac{0.5\left( {\frac{\partial }{\partial s}w(s,t)} \right) \left( {2\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) +2\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}v(s,t)} \right) } \right) }{\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}} \right) ^{2}}{\left( {1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}} \right) ^{2}}\\&+\frac{1}{2}I_{\mathrm{p}} \left( {\frac{\partial }{\partial s}\phi (s,t)} \right) ^{2}+I_{\mathrm{p}} \Omega \left( {\frac{\partial }{\partial s}\phi (s,t)} \right) +\frac{1}{2}I_{\mathrm{p}} \Omega ^{2}\\&+\frac{I_{\mathrm{p}} \left( {\frac{\partial }{\partial s}\phi (s,t)} \right) \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \left( {\frac{\partial }{\partial s}w(s,t)} \right) }{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}\sqrt{1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}}\\&+\frac{I_{\mathrm{p}} \Omega \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \left( {\frac{\partial }{\partial s}w(s,t)} \right) }{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}\sqrt{1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}}\\&+\frac{1}{2}\frac{I_{\mathrm{p}} \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}}{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}}-\frac{1}{2}\frac{I_{\mathrm{p}} \left( {\frac{\frac{\partial ^{2}}{\partial t\partial s}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial t\partial s}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}}{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}\left( {1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}} \right) }\\ \end{aligned}$$

Potential energy

$$\begin{aligned} U= & {} \frac{1}{2}A_{11} \left( {\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}-1} \right) ^{2}\\&+2B_{16} \left( {\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}-1} \right) \\&\left( {\frac{\partial }{\partial s}\phi (s,t)+\frac{\left( {\frac{\frac{\partial ^{2}}{\partial s^{2}}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial s^{2}}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \left( {\frac{\partial }{\partial s}w(s,t)} \right) }{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}\sqrt{1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}}} \right) \\&+\frac{1}{2}D_{11} \left( {\begin{array}{l} \frac{\left( {\frac{\frac{\partial ^{2}}{\partial s^{2}}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial s^{2}}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}}{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) ^{2}\left( {1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}} \right) }+ \\ \frac{\left( {\frac{\frac{\partial ^{2}}{\partial s^{2}}w(s,t)}{\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial s^{2}}u(s,t)} \right) +\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial s^{2}}v(s,t)} \right) } \right) }{\sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}} \right) ^{2}}{\left( {1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}} \right) ^{2}} \\ \end{array}} \right) \\&+\frac{1}{2}D_{66} \left( {\frac{\partial }{\partial s}\phi (s,t)+\frac{\left( {\frac{\frac{\partial ^{2}}{\partial s^{2}}v(s,t)}{1+\frac{\partial }{\partial s}u(s,t)}-\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) \left( {\frac{\partial ^{2}}{\partial s^{2}}u(s,t)} \right) }{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \left( {\frac{\partial }{\partial s}w(s,t)} \right) }{\left( {1+\frac{\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}}} \right) \sqrt{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}\sqrt{1+\frac{\left( {\frac{\partial }{\partial s}w(s,t)} \right) ^{2}}{\left( {1+\frac{\partial }{\partial s}u(s,t)} \right) ^{2}+\left( {\frac{\partial }{\partial s}v(s,t)} \right) ^{2}}}}} \right) \end{aligned}$$

First the above kinetic and potential energies are expanded in Taylor series up to order four and then Hamilton’s principle

$$\begin{aligned} \int _{t_1 }^{t_2 } {\left[ {\delta (T)-\delta U} \right] \mathrm{d}t=0} \end{aligned}$$

is applied to obtain Eqs. (14)–(17).

Appendix 3

$$\begin{aligned} \Gamma _1= & {} \left( -\frac{9}{2}\beta _1 ^{2}\pi ^{4}\alpha \delta ^{2}+\frac{9}{2}I_{\mathrm{p}} \Omega \pi ^{6}\beta _1 +\frac{9}{2}\pi ^{8}D_{11} \alpha \delta ^{2}\right. \nonumber \\&\left. +\frac{3}{2}I_{\mathrm{p}} \Omega \pi ^{6}\beta _1 \delta ^{2}-\frac{3}{2}\beta _1 ^{2}\pi ^{4}\alpha +\frac{3}{2}\pi ^{8}D_{11} \alpha \right) A_{11}\nonumber \\ \Lambda _1= & {} \left( \frac{3}{4}\pi ^{8}D_{11} \alpha +\frac{9}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _1 -\frac{9}{4}\beta _1 ^{2}\pi ^{4}\alpha ^{3}\right. \nonumber \\&\left. +\frac{3}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _1 \alpha ^{2}+\frac{9}{4}\pi ^{8}D_{11} \alpha ^{3}-\frac{3}{4}\beta _1 ^{2}\pi ^{4}\alpha \right) A_{11} \end{aligned}$$
$$\begin{aligned} \Psi _1= & {} \left( \frac{3}{4}\beta _1 ^{2}\pi ^{4}\alpha -\frac{3}{4}\pi ^{8}D_{11} \alpha -\frac{3}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _1 \right) A_{11} \\ \Phi _1= & {} -2\pi ^{4}D_{11} \alpha \beta _1 -I_{\mathrm{p}} ^{2}\Omega ^{2}\pi ^{4}\beta _1 \alpha \nonumber \\&+2\beta _1 ^{3}\alpha -\beta _1 ^{2}I_{\mathrm{p}} \Omega \pi ^{2}-\pi ^{6}D_{11} I_{\mathrm{p}} \Omega \\ \Gamma _2= & {} \left( \frac{9}{2}I_{\mathrm{p}} \Omega \pi ^{6}\beta _2 -\frac{3}{2}\beta _2 ^{2}\pi ^{4}\delta -\frac{9}{2}\beta _2 ^{2}\pi ^{4}\alpha ^{2}\delta \right. \nonumber \\&\left. +\frac{3}{2}I_{\mathrm{p}} \Omega \pi ^{6}\beta _2 \alpha ^{2}\!+\!\frac{9}{2}\pi ^{8}D_{11} \alpha ^{2}\delta \!+\!\frac{3}{2}\pi ^{8}D_{11} \delta \!\right) A_{11} \\ \Lambda _2= & {} \left( \frac{3}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _2 \delta ^{2}+\frac{9}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _2 \right. \nonumber \\&+\frac{3}{4}\pi ^{8}D_{11} \delta +\frac{9}{4}\pi ^{8}D_{11} \delta ^{3}-\frac{3}{4}\beta _2 ^{2}\pi ^{4}\delta \nonumber \\&\left. -\frac{9}{4}\beta _2 ^{2}\pi ^{4}\delta ^{3} \right) A_{11} \\ \Psi _2= & {} \left( {-\frac{3}{4}I_{\mathrm{p}} \Omega \pi ^{6}\beta _2 +\frac{3}{4}\beta _2 ^{2}\pi ^{4}\delta -\frac{3}{4}\pi ^{8}D_{11} \delta } \right) A_{11} \\ \Phi _2= & {} 2\beta _2 ^{3}\delta -\beta _2 ^{2}I_{\mathrm{p}} \Omega \pi ^{2}-I_{\mathrm{p}} ^{2}\Omega ^{2}\pi ^{4}\beta _2 \delta -\pi ^{6}D_{11} I_{\mathrm{p}} \Omega \nonumber \\&-2\pi ^{4}D_{11} \delta \beta _2 \end{aligned}$$

Appendix 4

$$\begin{aligned} \alpha= & {} -\frac{i\left( {\left( {-2\sqrt{\pi ^{8}\Omega ^{2}I_{\mathrm{p}} ^{2}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+4D_{11} } \right) }+\left( {-4D_{11} -2\Omega ^{2}I_{\mathrm{p}} ^{2}} \right) \pi ^{4}} \right) ^{3/2}} \right) }{8I_{pp} \Omega \pi ^{6}D_{11} } \\&-\frac{i\left( {\pi ^{4}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+D_{11} } \right) \sqrt{-2\sqrt{\pi ^{8}\Omega ^{2}I_{\mathrm{p}} ^{2}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+4D_{11} } \right) }+\left( {-4D_{11} -2\Omega ^{2}I_{\mathrm{p}} ^{2}} \right) \pi ^{4}}} \right) }{2I_{pp} \Omega \pi ^{6}D_{11} } \\ \delta= & {} \frac{-i\left( {\left( {2\sqrt{\pi ^{8}\Omega ^{2}I_{\mathrm{p}} ^{2}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+4D_{11} } \right) }+\left( {-4D_{11} -2\Omega ^{2}I_{\mathrm{p}} ^{2}} \right) \pi ^{4}} \right) ^{3/2}} \right) }{8I_{\mathrm{p}} \Omega \pi ^{6}D_{11} } \\&\frac{-i\left( {\pi ^{4}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+D_{11} } \right) \sqrt{2\sqrt{\pi ^{8}\Omega ^{2}I_{\mathrm{p}} ^{2}\left( {\Omega ^{2}I_{\mathrm{p}} ^{2}+4D_{11} } \right) }+\left( {-4D_{11} -2\Omega ^{2}I_{\mathrm{p}} ^{2}} \right) \pi ^{4}}} \right) }{2I_{\mathrm{p}} \Omega \pi ^{6}D_{11} } \\ \zeta= & {} -\frac{3\left( {\frac{1}{3}\sqrt{9}\sqrt{\pi ^{2}\left( {\left( {A_{11} -4D_{66} } \right) ^{2}\pi ^{2}+\frac{1024}{9}B_{16} ^{2}} \right) }+\pi ^{2}\left( {A_{11} -4D_{66} } \right) } \right) }{16B_{16} \pi } \\ \lambda= & {} -\frac{3\left( {-\frac{1}{3}\sqrt{9}\sqrt{\pi ^{2}\left( {\left( {A_{11} -4D_{66} } \right) ^{2}\pi ^{2}+\frac{1024}{9}B_{16} ^{2}} \right) }+\pi ^{2}\left( {A_{11} -4D_{66} } \right) } \right) }{16B_{16} \pi } \\ \eta= & {} \frac{3\left( {\frac{1}{12}\sqrt{144}\sqrt{\left( {\left( {A_{11} -\frac{1}{4}D_{66} } \right) ^{2}\pi ^{2}+\frac{256}{9}B_{16} ^{2}} \right) \pi ^{2}}+\left( {A_{11} -\frac{1}{4}D_{66} } \right) \pi ^{2}} \right) }{32B_{16} \pi } \\ \mu= & {} \frac{3\left( {-\frac{1}{12}\sqrt{144}\sqrt{\left( {\left( {A_{11} -\frac{1}{4}D_{66} } \right) ^{2}\pi ^{2}+\frac{256}{9}B_{16} ^{2}} \right) \pi ^{2}}+\left( {A_{11} -\frac{1}{4}D_{66} } \right) \pi ^{2}} \right) }{32B_{16} \pi } \end{aligned}$$

Appendix 5

$$\begin{aligned}&U1_2 \left( {T_0 ,T_1 ,T_2 } \right) =\Pi 1_{u\phi 1} \left( {T_2 } \right) \hbox {e}^{-5i\beta _1 T_0 }\nonumber \\&\quad +\Pi 1_{u\phi 2} \left( {T_2 } \right) \hbox {e}^{-5i\beta _2 T_0 }+\Pi 1_{u\phi 3} \left( {T_2 } \right) \hbox {e}^{-3i\beta _1 T_0 }\nonumber \\&\quad +\Pi 1_{u\phi 4} \left( {T_2 } \right) \hbox {e}^{-3i\beta _2 T_0 } +\Pi 1_{u\phi 5} \left( {T_2 } \right) \hbox {e}^{-2i\beta _1 T_0 }\nonumber \\&\quad +\Pi 1_{u\phi 6} \left( {T_2 } \right) \hbox {e}^{-2i\beta _2 T_0 }+\Pi 1_{u\phi 7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +\beta _1 } \right) } +\Pi 1_{u\phi 9} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 10} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _1 } \right) }+\Pi 1_{u\phi 11} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 12} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {4\beta _2 +\beta _1 } \right) } +\Pi 1_{u\phi 13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +\beta _1 } \right) }+\Pi 1_{u\phi 15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _1 } \right) } +\Pi 1_{u\phi 17} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{u\phi 18} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {4\beta _2 +\beta _1 } \right) }+\Pi 1_{u\phi 19} \left( {T_2 } \right) \hbox {e}^{2i\beta _1 T_0 }\nonumber \\&\quad +\Pi 1_{u\phi 20} \left( {T_2 } \right) \hbox {e}^{2i\beta _2 T_0 }+\Pi 1_{u\phi 21} \left( {T_2 } \right) \hbox {e}^{3i\beta _1 T_0 } \\&\quad +\Pi 1_{u\phi 22} \left( {T_2 } \right) \hbox {e}^{3i\beta _2 T_0 }+\Pi 1_{u\phi 23} \left( {T_2 } \right) \hbox {e}^{5i\beta _1 T_0 }\nonumber \\&\quad +\Pi 1_{u\phi 24} \left( {T_2 } \right) \hbox {e}^{5i\beta _2 T_0 } \\&\varphi 2_2 \left( {T_0 ,T_1 ,T_2 } \right) =\Theta 2_{u\phi 1} \left( {T_2 } \right) \hbox {e}^{-5i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 2} \left( {T_2 } \right) \hbox {e}^{-5i\beta _2 T_0 }+\Theta 2_{u\phi 3} \left( {T_2 } \right) \hbox {e}^{-3i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 4} \left( {T_2 } \right) \hbox {e}^{-3i\beta _2 T_0 } +\Theta 2_{u\phi 5} \left( {T_2 } \right) \hbox {e}^{-2i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 6} \left( {T_2 } \right) \hbox {e}^{-2i\beta _2 T_0 } +\Theta 2_{u\phi 7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +\beta _1 } \right) }+\Theta 2_{u\phi 9} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 10} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _1 } \right) }+\Theta 2_{u\phi 11} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 12} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {4\beta _2 +\beta _1 } \right) } +\Theta 2_{u\phi 13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +\beta _1 } \right) }+\Theta 2_{u\phi 15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _1 } \right) } +\Theta 2_{u\phi 17} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 2_{u\phi 18} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {4\beta _2 +\beta _1 } \right) }+\Theta 2_{u\phi 19} \left( {T_2 } \right) \hbox {e}^{2i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 20} \left( {T_2 } \right) \hbox {e}^{2i\beta _2 T_0 } +\Theta 2_{u\phi 21} \left( {T_2 } \right) \hbox {e}^{3i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 22} \left( {T_2 } \right) \hbox {e}^{3i\beta _2 T_0 }+\Theta 2_{u\phi 23} \left( {T_2 } \right) \hbox {e}^{5i\beta _1 T_0 }\nonumber \\&\quad +\Theta 2_{u\phi 24} \left( {T_2 } \right) \hbox {e}^{5i\beta _2 T_0 } \\ \end{aligned}$$
$$\begin{aligned}&U2_2 \left( {T_0 ,T_2 } \right) =\Pi 2_{u\phi 1} \left( {T_2 } \right) \hbox {e}^{-5i\beta _1 T_0 }\nonumber \\&\quad +\Pi 2_{u\phi 2} \left( {T_2 } \right) \hbox {e}^{-5i\beta _2 T_0 }+\Pi 2_{u\phi 3} \left( {T_2 } \right) \hbox {e}^{-3i\beta _1 T_0 }\nonumber \\&\quad +\Pi 2_{u\phi 4} \left( {T_2 } \right) \hbox {e}^{-3i\beta _2 T_0 } +\Pi 2_{u\phi 5} \left( {T_2 } \right) \hbox {e}^{-2i\beta _1 T_0 } \nonumber \\&\quad +\Pi 2_{u\phi 6} \left( {T_2 } \right) \hbox {e}^{-2i\beta _2 T_0 }+\Pi 2_{u\phi 7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Pi 2_{u\phi 8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +\beta _1 } \right) } +\Pi 2_{u\phi 9} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 2_{u\phi 10} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _1 } \right) }+\Pi 2_{u\phi 11} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 2_{u\phi 12} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {4\beta _2 +\beta _1 } \right) } \\&\quad +\Pi 2_{u\phi 13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-4\beta _2 +\beta _1 } \right) }+\Pi 2_{u\phi 14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Pi 2_{u\phi 15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +4\beta _1 } \right) }+\Pi 2_{u\phi 16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _1 } \right) } \\&\quad +\Pi 2_{u\phi 17} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +4\beta _1 } \right) }+\Pi 2_{u\phi 18} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Pi 2_{u\phi 19} \left( {T_2 } \right) \hbox {e}^{2i\beta _1 T_0 }+\Pi 2_{u\phi 20} \left( {T_2 } \right) \hbox {e}^{2i\beta _2 T_0 } \\&\quad +\Pi 2_{u\phi 21} \left( {T_2 } \right) \hbox {e}^{3i\beta _1 T_0 }+\Pi 2_{u\phi 22} \left( {T_2 } \right) \hbox {e}^{3i\beta _2 T_0 }\nonumber \\&\quad +\Pi 2_{u\phi 23} \left( {T_2 } \right) \hbox {e}^{5i\beta _1 T_0 }+\Pi 2_{u\phi 24} \left( {T_2 } \right) \hbox {e}^{5i\beta _2 T_0 } \\&\varphi 1_2 \left( {T_0 ,T_2 } \right) =\Theta 1_{u\phi 1} \left( {T_2 } \right) \hbox {e}^{-5i\beta _1 T_0 }+\Theta 1_{u\phi 2} \left( {T_2 } \right) \hbox {e}^{-5i\beta _2 T_0 }\nonumber \\&\quad +\Theta 1_{u\phi 3} \left( {T_2 } \right) \hbox {e}^{-3i\beta _1 T_0 }+\Theta 1_{u\phi 4} \left( {T_2 } \right) \hbox {e}^{-3i\beta _2 T_0 } \\&\quad +\Theta 1_{u\phi 5} \left( {T_2 } \right) \hbox {e}^{-2i\beta _1 T_0 }+\Theta 1_{u\phi 6} \left( {T_2 } \right) \hbox {e}^{-2i\beta _2 T_0 }\nonumber \\&\quad +\Theta 1_{u\phi 7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-4\beta _2 +\beta _1 } \right) }+\Theta 1_{u\phi 8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +\beta _1 } \right) } \\&\quad +\Theta 1_{u\phi 9} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {-\beta _2 +4\beta _1 } \right) }+\Theta 1_{u\phi 10} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{u\phi 11} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +4\beta _1 } \right) }+\Theta 1_{u\phi 12} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {4\beta _2 +\beta _1 } \right) } \\&\quad +\Theta 1_{u\phi 13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-4\beta _2 +\beta _1 } \right) }+\Theta 1_{u\phi 14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{u\phi 15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {-\beta _2 +4\beta _1 } \right) }+\Theta 1_{u\phi 16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _1 } \right) } \\&\quad +\Theta 1_{u\phi 17} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +4\beta _1 } \right) }+\Theta 1_{u\phi 18} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {4\beta _2 +\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{u\phi 19} \left( {T_2 } \right) \hbox {e}^{2i\beta _1 T_0 }+\Theta 1_{u\phi 20} \left( {T_2 } \right) \hbox {e}^{2i\beta _2 T_0 }\nonumber \\&\quad +\Theta 1_{u\phi 21} \left( {T_2 } \right) \hbox {e}^{3i\beta _1 T_0 } \\&\quad +\Theta 1_{u\phi 22} \left( {T_2 } \right) \hbox {e}^{3i\beta _2 T_0 }+\Theta 1_{u\phi 23} \left( {T_2 } \right) \hbox {e}^{5i\beta _1 T_0 }\\&\quad +\Theta 1_{u\phi 24} \left( {T_2 } \right) \hbox {e}^{5i\beta _2 T_0 } \\ \end{aligned}$$
$$\begin{aligned}&V1_2 (T_0 ,T_2 )=\Pi 1_{vw1} \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{32} } \right) }\nonumber \\&\quad +\Pi 1_{vw2} \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{32} } \right) }\nonumber \\&\quad +\Pi 1_{vw3} \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _\phi } \right) }+\Pi 1_{vw4} \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _\phi } \right) } \\&\quad +\Pi 1_{vw5} \hbox {e}^{-iT_0 \left( {4\beta _1 -\beta _{31} } \right) }+\Pi 1_{vw6} \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{32} } \right) }\nonumber \\&\quad +\Pi 1_{vw7} \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{32} } \right) }+\Pi 1_{vw8} \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _\phi } \right) }\nonumber \\&\quad +\Pi 1_{vw9} \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _\phi } \right) }+\Pi 1_{vw10} \hbox {e}^{-iT_0 \left( {4\beta _2 -\beta _{2\phi } } \right) } \\&\quad +\Pi 1_{vw11} \hbox {e}^{-iT_0 \left( {-\beta _{31} +4\beta _2 } \right) }+\Pi 1_{vw12} \hbox {e}^{-iT_0 \left( {\beta _{31} +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{vw13} \hbox {e}^{-iT_0 \left( {\beta _{31} +4\beta _2 } \right) }+\Pi 1_{vw14} \hbox {e}^{-iT_0 \left( {-\beta _{2\phi } +4\beta _1 } \right) } \\&\quad +\Pi 1_{vw15} \hbox {e}^{-iT_0 \left( {\beta _{2\phi } +4\beta _1 } \right) }+\Pi 1_{vw16} \hbox {e}^{-iT_0 \left( {\beta _{2\phi } +4\beta _2 } \right) }\nonumber \\&\quad +\Pi 1_{vw17} \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{32} } \right) }+\Pi 1_{vw18} \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{32} } \right) } \\&\quad +\Pi 1_{vw19} \hbox {e}^{iT_0 \left( {\beta _1 -\beta _\phi } \right) }+\Pi 1_{vw20} \hbox {e}^{iT_0 \left( {\beta _1 +\beta _\phi } \right) }\nonumber \\&\quad +\Pi 1_{vw21} \hbox {e}^{iT_0 \left( {4\beta _1 -\beta _{31} } \right) }+\Pi 1_{vw22} \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{32} } \right) } \\&\quad +\Pi 1_{vw23} \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{32} } \right) }+\Pi 1_{vw24} \hbox {e}^{iT_0 \left( {\beta _2 -\beta _\phi } \right) }\nonumber \\&\quad +\Pi 1_{vw25} \hbox {e}^{iT_0 \left( {\beta _2 +\beta _\phi } \right) }+\Pi 1_{vw26} \hbox {e}^{iT_0 \left( {4\beta _2 -\beta _{2\phi } } \right) }\nonumber \\&\quad +\Pi 1_{vw27} \hbox {e}^{iT_0 \left( {-\beta _{31} +4\beta _2 } \right) }+\Pi 1_{vw28} \hbox {e}^{iT_0 \left( {\beta _{31} +4\beta _1 } \right) } \\&\quad +\Pi 1_{vw29} \hbox {e}^{iT_0 \left( {\beta _{31} +4\beta _2 } \right) }+\Pi 1_{vw30} \hbox {e}^{iT_0 \left( {-\beta _{2\phi } +4\beta _1 } \right) }\nonumber \\&\quad +\Pi 1_{vw31} \hbox {e}^{iT_0 \left( {\beta _{2\phi } +4\beta _1 } \right) }+\Pi 1_{vw32} \hbox {e}^{iT_0 \left( {\beta _{2\phi } +4\beta _2 } \right) } \\ \end{aligned}$$
$$\begin{aligned}&W1_2 (T_0 ,T_2 )=\Theta 1_{vw1} \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{32} } \right) }\nonumber \\&\quad +\Theta 1_{vw2} \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{32} } \right) }+\Theta 1_{vw3} \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _\phi } \right) }\nonumber \\&\quad +\Theta 1_{vw4} \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _\phi } \right) }+\Theta 1_{vw5} \hbox {e}^{-iT_0 \left( {4\beta _1 -\beta _{31} } \right) } \\&\quad +\Theta 1_{vw6} \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{32} } \right) }+\Theta 1_{vw7} \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{32} } \right) }\nonumber \\&\quad +\Theta 1_{vw8} \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _\phi } \right) }+\Theta 1_{vw9} \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _\phi } \right) }\nonumber \\&\quad +\Theta 1_{vw10} \hbox {e}^{-iT_0 \left( {4\beta _2 -\beta _{2\phi } } \right) } \\&\quad +\Theta 1_{vw11} \hbox {e}^{-iT_0 \left( {-\beta _{31} +4\beta _2 } \right) }+\Theta 1_{vw12} \hbox {e}^{-iT_0 \left( {\beta _{31} +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{vw13} \hbox {e}^{-iT_0 \left( {\beta _{31} +4\beta _2 } \right) }+\Theta 1_{vw14} \hbox {e}^{-iT_0 \left( {-\beta _{2\phi } +4\beta _1 } \right) } \\&\quad +\Theta 1_{vw15} \hbox {e}^{-iT_0 \left( {\beta _{2\phi } +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{vw16} \hbox {e}^{-iT_0 \left( {\beta _{2\phi } +4\beta _2 } \right) }+\Theta 1_{vw17} \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{32} } \right) }\nonumber \\&\quad +\Theta 1_{vw18} \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{32} } \right) }+\Theta 1_{vw19} \hbox {e}^{iT_0 \left( {\beta _1 -\beta _\phi } \right) } \\&\quad +\Theta 1_{vw20} \hbox {e}^{iT_0 \left( {\beta _1 +\beta _\phi } \right) }+\Theta 1_{vw21} \hbox {e}^{iT_0 \left( {4\beta _1 -\beta _{31} } \right) }\nonumber \\&\quad +\Theta 1_{vw22} \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{32} } \right) }+\Theta 1_{vw23} \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{32} } \right) }\nonumber \\&\quad +\Theta 1_{vw24} \hbox {e}^{iT_0 \left( {\beta _2 -\beta _\phi } \right) } \\&\quad +\Theta 1_{vw25} \hbox {e}^{iT_0 \left( {\beta _2 +\beta _\phi } \right) }+\Theta 1_{vw26} \hbox {e}^{iT_0 \left( {4\beta _2 -\beta _{2\phi } } \right) }\nonumber \\&\quad +\Theta 1_{vw27} \hbox {e}^{iT_0 \left( {-\beta _{31} +4\beta _2 } \right) }+\Theta 1_{vw28} \hbox {e}^{iT_0 \left( {\beta _{31} +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{vw29} \hbox {e}^{iT_0 \left( {\beta _{31} +4\beta _2 } \right) } +\Theta 1_{vw30} \hbox {e}^{iT_0 \left( {-\beta _{2\phi } +4\beta _1 } \right) }\nonumber \\&\quad +\Theta 1_{vw31} \hbox {e}^{iT_0 \left( {\beta _{2\phi } +4\beta _1 } \right) }+\Theta 1_{vw32} \hbox {e}^{iT_0 \left( {\beta _{2\phi } +4\beta _2 } \right) } \\ \end{aligned}$$
$$\begin{aligned}&V2_2 \left( {T_0 ,T_2 } \right) =\Pi 2_{vw1} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{31} } \right) }\\&\quad +\Pi 2_{vw2} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw3} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{\phi 2} } \right) } \\&\quad +\Pi 2_{vw4} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{\phi 2} } \right) }\nonumber \\&\quad +\Pi 2_{vw5} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{u1} } \right) }\\&\quad +\Pi 2_{vw6} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{\phi 2} } \right) } \\&\quad +\Pi 2_{vw8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{\phi 2} } \right) }\nonumber \\&\quad +\Pi 2_{vw9} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw10} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw11} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{\phi 2} } \right) } \\&\quad +\Pi 2_{vw12} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{\phi 2} } \right) }\nonumber \\&\quad +\Pi 2_{vw13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{u1} } \right) }\nonumber \\&\quad +\Pi 2_{vw15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{\phi 2} } \right) } \\&\quad +\Pi 2_{vw16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{\phi 2} } \right) } \\&W2_2 \left( {T_0 ,T_2 } \right) =\Theta 2_{vw1} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{31} } \right) }\nonumber \\&\quad +\Theta 2_{vw2} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{u1} } \right) }+\Theta 2_{vw3} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 -\beta _{\phi 2} } \right) } \\&\quad +\Theta 2_{vw4} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _1 +\beta _{\phi 2} } \right) }+\Theta 2_{vw5} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{u1} } \right) }\nonumber \\&\quad +\Theta 2_{vw6} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{u1} } \right) }+\Theta 2_{vw7} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 -\beta _{\phi 2} } \right) } \\&\quad +\Theta 2_{vw8} \left( {T_2 } \right) \hbox {e}^{-iT_0 \left( {\beta _2 +\beta _{\phi 2} } \right) }+\Theta 2_{vw9} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{u1} } \right) }\nonumber \\&\quad +\Theta 2_{vw10} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{u1} } \right) }+\Theta 2_{vw11} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 -\beta _{\phi 2} } \right) } \\&\quad +\Theta 2_{vw12} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _1 +\beta _{\phi 2} } \right) }+\Theta 2_{vw13} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{u1} } \right) }\nonumber \\&\quad +\Theta 2_{vw14} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{u1} } \right) }+\Theta 2_{vw15} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 -\beta _{\phi 2} } \right) } \\&\quad +\Theta 2_{vw16} \left( {T_2 } \right) \hbox {e}^{iT_0 \left( {\beta _2 +\beta _{\phi 2} } \right) } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban Ali Nezhad, H., Hosseini, S.A.A. & Zamanian, M. Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn 89, 651–690 (2017). https://doi.org/10.1007/s11071-017-3479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3479-0

Keywords

Navigation