Skip to main content
Log in

Pattern formation in a system involving prey–predation, competition and commensalism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, pattern forming instabilities in a three species reaction–diffusion system involving prey–predation, competition and commensalism are explored. The system consists of two competing species, and the third species acts as a predator for one of the species and as a host for the other species. The equilibrium points of the model are determined. The conditions for existence of interior equilibrium point are derived. Bifurcation analysis of the model is done, and conditions for existence of Turing and non-Turing patterns are derived using Routh–Hurwitz criteria. A series of numerical simulation results are presented to show Turing as well as non-Turing patterns. Various types of patterns (e.g., spirals, spots, strips, mixture of spots and strips) are observed depending on the ecological parameters of the local system and diffusion coefficients. The existence of spatially homogeneous, inhomogeneous periodic and inhomogeneous aperiodic oscillations and chaotic oscillations is shown in the three species model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  2. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  3. Maini, P., Painter, K., Chau, H.P.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93(20), 3601–3610 (1997)

    Article  Google Scholar 

  4. Winfree, A.T.: Spiral waves of chemical activity. Science 175(4022), 634–636 (1972)

    Article  Google Scholar 

  5. Castets, V., Dulos, E., Boissonade, J., Kepper, P.D.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64(24), 2953 (1990)

    Article  Google Scholar 

  6. Waddington, C.H., Perry, M.M.: The ultrastructure of the developing urodele notochord. Proc. R. Soc. Lond. B Biol. Sci. 156(965), 459–482 (1962)

    Article  Google Scholar 

  7. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972)

    Article  MATH  Google Scholar 

  8. Rogers, K.W., Schier, A.F.: Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011)

    Article  Google Scholar 

  9. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352(6336), 610–612 (1991)

    Article  Google Scholar 

  10. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    Article  Google Scholar 

  11. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37(3), 545–559 (1972)

    Article  Google Scholar 

  12. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity. Chaos Solitons Fractals 91, 421–429 (2016)

    Article  MathSciNet  Google Scholar 

  14. Sun, G.Q., Zhang, J., Song, L.P., Jin, Z., Li, B.L.: Pattern formation of a spatial predator-prey system. Appl. Math. Comput. 218(22), 11151–11162 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84(2), 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  16. Chen, J.X., Guo, M.M., Ma, J.: Termination of pinned spirals by local stimuli. Europhys. Lett. 113(3), 38004 (2016)

    Article  Google Scholar 

  17. Xu, Y., Jin, W., Ma, J.: Emergence and robustness of target waves in a neuronal network. Int. J. Mod. Phys. B 29(23), 1550164 (2015)

    Article  MATH  Google Scholar 

  18. Qin, H., Wu, Y., Wang, C., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1), 164–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, T.B., Ma, J., Zhao, Q., Tang, J.: Force exerted on the spiral tip by the heterogeneity in an excitable medium. Europhys. Lett. 104(5), 58005 (2014)

    Article  Google Scholar 

  20. Song, X., Wang, C., Ma, J., Ren, G.: Collapse of ordered spatial pattern in neuronal network. Phys. A Stat. Mech. Appl. 451, 95–112 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ma, J., Xu, Y., Wang, C., Jin, W.: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys. A Stat. Mech. Appl. 461, 586–594 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lou, Q., Chen, J.X., Zhao, Y.H., Shen, F.R., Fu, Y., Wang, L.L., Liu, Y.: Control of turbulence in heterogeneous excitable media. Phys. Rev. E 85(2), 026213 (2012)

    Article  Google Scholar 

  23. Chen, J.X., Peng, L., Zheng, Q., Zhao, Y.H., Ying, H.P.: Influences of periodic mechanical deformation on pinned spiral waves. Chaos Interdiscip. J. Nonlinear Sci. 24(3), 033103 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ghorai, S., Poria, S.: Pattern formation and control of spatiotemporal chaos in a reaction diffusion preypredator system supplying additional food. Chaos Solitons Fractals 85, 57–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malakar, K., Nandi, J., Mitra, S., Gorai, P.K., Chattopadhyay, S., Banerjee, S.: Rectangular microstrip antenna with air cavity for high gain and improved front to back ratio. J. Electromagn. Anal. Appl. 3(09), 368–372 (2011)

    Google Scholar 

  26. Chakraborty, K., Manthena, V.: Modelling and analysis of spatio-temporal dynamics of a marine ecosystem. Nonlinear Dyn. 81(4), 1895–1906 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guin, L.N., Mandal, P.K.: Spatiotemporal dynamics of reaction diffusion models of interacting populations. Appl. Math. Model. 38(17), 4417–4427 (2014)

    Article  MathSciNet  Google Scholar 

  28. Song, Y., Zou, X.: Bifurcation analysis of a diffusive ratio-dependent predator–prey model. Nonlinear Dyn. 78(1), 49–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58(1–2), 75–84 (2009)

    Article  MATH  Google Scholar 

  30. Sun, G.Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69(3), 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

  31. Li, J., Sun, G.Q., Jin, Z.: Pattern formation of an epidemic model with time delay. Phys. A Stat. Mech. Appl. 403, 100–109 (2014)

    Article  MathSciNet  Google Scholar 

  32. Li, L., Zhen, J., Gui-Quan, S.: Spatial pattern of an epidemic model with cross-diffusion. Chin. Phys. Lett. 25(9), 3500–3503 (2008)

    Article  Google Scholar 

  33. Sun, G.Q., Jin, Z., Li, L., Li, B.L.: Self-organized wave pattern in a predator-prey model. Nonlinear Dyn. 60(3), 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, G.Q., Jusup, M., Jin, Z., Wang, Y., Wang, Z.: Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

    Article  Google Scholar 

  35. Sun, G.Q., Jin, Z., Li, L., Haque, M., Li, B.L.: Spatial patterns of a predator-prey model with cross diffusion. Nonlinear Dyn. 69(4), 1631–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, G.Q., Wu, Z.Y., Wang, Z., Jin, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83(1–2), 811–819 (2016)

    Article  MathSciNet  Google Scholar 

  37. Li, A.W.: Impact of noise on pattern formation in a predator-prey model. Nonlinear Dyn. 66(4), 689–694 (2011)

    Article  MathSciNet  Google Scholar 

  38. Sun, G.Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85(1), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  39. Sun, G.Q., Wang, S.L., Ren, Q., Jin, Z., Wu, Y.P.: Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci. Rep. 5, 11246 (2015)

    Article  Google Scholar 

  40. Li, L., Jin, Z., Li, J.: Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Appl. Math. Model. 40(7), 4765–4777 (2016)

    Article  MathSciNet  Google Scholar 

  41. Sun, G.Q., Chakraborty, A., Liu, Q.X., Jin, Z., Anderson, K.E., Li, B.L.: Influence of time delay and nonlinear diffusion on herbivore outbreak. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1507–1518 (2014)

    Article  MathSciNet  Google Scholar 

  42. Tang, X., Song, Y., Zhang, T.: Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion. Nonlinear Dyn. 86(1), 73–89 (2016)

  43. Hastings, A., Powell, T.: Chaos in a threespecies food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  44. Chattopadhyay, J., Arino, O.: A predator-prey model with disease in the prey. Nonlinear Anal. Theory Methods Appl. 36(6), 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29(2), 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Panja, P., Mondal, S.K.: Stability analysis of coexistence of three species preypredator model. Nonlinear Dyn. 81(1–2), 373–382 (2015)

    Article  MATH  Google Scholar 

  47. Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58, 52–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Freedman, H.I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68(2), 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Freedman, H.I., Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosci. 33(3), 257–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ma, Z.P., Yue, J.L.: Competitive exclusion and coexistence of a delayed reaction-diffusion system modeling two predators competing for one prey. Compu. Math. Appl. 71(9), 1799–1817 (2016)

    Article  MathSciNet  Google Scholar 

  51. Morozov, A., Ruan, S., Li, B.L.: Patterns of patchy spread in multi-species reaction–diffusion models. Ecol. Complex. 5(4), 313–328 (2008)

    Article  Google Scholar 

  52. Hata, S., Nakao, H., Mikhailov, A.S.: Sufficient conditions for wave instability in three-component reaction-diffusion systems. Prog. Theor. Exp. Phys. 2014(1), 013A01 (2014)

  53. White, K.A.J., Gilligan, C.A.: Spatial heterogeneity in three species, plant–parasite-hyperparasite, systems. Philos. Trans. R. Soc. B 353(1368), 543–557 (1998)

  54. Zheng, S.: A reaction-diffusion system of a predator-prey-mutualist model. Math. Biosci. 78(2), 217–245 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  55. Satnoianu, R.A., Menzinger, Maini, P.K.: Turing instabilities in general systems. J. Math. Biol. 41(6), 493–512 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chaudhuri, S., Chattopadhyay, J., Venturino, E.: Toxic phytoplankton-induced spatiotemporal patterns. J. Biol. Phys. 38(2), 331–348 (2012)

    Article  Google Scholar 

  57. Parshad, R.D., Kumari, N., Kasimov, A.R., Abderrahmane, H.A.: Turing patterns and long-time behavior in a three-species food-chain model. Math. Biosci. 254, 83–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tian, C., Ling, Z., Lin, Z.: Turing pattern formation in a predator-prey-mutualist system. Nonlinear Anal. Real World Appl. 12(6), 3224–3237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lv, Y., Yuan, R., Pei, Y.: Turing pattern formation in a three species model with generalist predator and cross-diffusion. Nonlinear Anal. Theory Methods Appl. 85, 214–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71(1), 125–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Polis, G.A., Myers, C.A., Holt, R.D.: The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989)

    Article  Google Scholar 

  62. Gakkhar, S., Gupta, K.: A three species dynamical system involving prey–predation, competition and commensalism. Appl. Math. Comput. 237, 54–67 (2016)

    MathSciNet  Google Scholar 

  63. Nagumo, M.: Über die lage der integralkurven gewöhnlicher differentialgleichungen. Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki 24(0), 551–559 (1942)

    MATH  Google Scholar 

  64. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interaction. Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  65. Hawick, K.A., James, H.A., Scogings, C.J.: A zoology of emergent patterns in a predator-prey simulation model. In: Proceedings of the Sixth IASTED International Conference on Modelling, Simulation, and Optimization, Gabarone, Botswana, pp. 84–89 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Poria, S. Pattern formation in a system involving prey–predation, competition and commensalism. Nonlinear Dyn 89, 1309–1326 (2017). https://doi.org/10.1007/s11071-017-3517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3517-y

Keywords

Navigation