Skip to main content
Log in

SF-SIMM high-dimensional hyperchaotic map and its performance analysis

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Derived from Sine map and an iterative chaotic map with infinite collapse (ICMIC), a new high-dimensional hyperchaotic map, sinusoidal feedback Sine ICMIC modulation map (SF-SIMM), is proposed. Two-dimensional (2D) model of SF-SIMM is investigated as an example, and its chaotic performances are evaluated. Results show that it has complicated phase space trajectory, infinite equilibrium points, hyperchaotic behaviors, rather large maximum Lyapunov exponent, three typical bifurcations and multiple coexisting attractors with odd symmetry. Furthermore, it has advantages in complexity, distribution characteristics and zero correlation and can generate two independent pseudo-random sequences simultaneously. Therefore, it has good application prospects in secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  2. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart C 278(6), 2039–2049 (2000)

    Google Scholar 

  3. He, S.B., Sun, K.H., Wang, H.H.: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system. Entropy 17(12), 8299–8311 (2015)

    Article  Google Scholar 

  4. Liu, W.H., Sun, K.H., Zhu, C.X.: A fast image encryption algorithm based on chaotic map. Opt. Laser Eng. 84, 26–36 (2016)

    Article  Google Scholar 

  5. Wang, X.Y., Gu, S.X., Zhang, Y.Q.: Novel image encryption algorithm based on cycle shift and chaotic system. Opt. Laser Eng. 68, 126–134 (2015)

    Article  Google Scholar 

  6. Zhu, C.X., Xu, S.Y., Hu, Y.P., Sun, K.H.: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 79(2), 1511–1518 (2015)

    Article  Google Scholar 

  7. Varadan, V., Leung, H.: Design of piecewise maps for chaotic spread-spectrum communications using genetic programming. IEEE Trans. Circuits I 49(11), 1543–1553 (2002)

    Article  Google Scholar 

  8. Arroyo, D., Diaz, J., Rodriguez, F.B.: Cryptanalysis of a one round chaos-based substitution permutation network. Signal Process. 93(5), 1358–1364 (2012)

    Article  Google Scholar 

  9. Li, C.Q., Zhang, L.Y., Ou, R., Wong, K.W., Shu, S.: Breaking a novel color image encryption algorithm based on chaos. Nonlinear Dyn. 70(4), 2383–2388 (2012)

    Article  Google Scholar 

  10. Skrobek, A.: Cryptanalysis of chaotic stream cipher. Phys. Lett. A 363(1–2), 84–90 (2007)

    Article  Google Scholar 

  11. Ling, C., Wu, X.F., Sun, S.G.: A general efficient method for chaotic signal estimation. IEEE Trans. Signal Process. 47(5), 1424–1428 (1999)

    Article  Google Scholar 

  12. Wu, X., Hu, H., Zhang, B.: Parameter estimation only from the symbolic sequences generated by chaos system. Chaos Solitons Fractals 22(2), 359–366 (2004)

    Article  MATH  Google Scholar 

  13. Chen, J.X., Zhu, Z.L., Fu, C., Zhang, L.B., Yu, H.: Analysis and improvement of a double-image encryption scheme using pixel scrambling technique in gyrator domains. Opt. Laser Eng. 66, 1–9 (2015)

    Article  Google Scholar 

  14. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys 50(1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sheng, L.Y., Sun, K.H., Li, C.B.: Study of discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Phys. Sin 53(9), 2871–2876 (2004)

    Google Scholar 

  17. Wang, G.Y., Yuan, F.: Cascade chaos and its dynamic characteristics. Acta Phys. Sin 62(2), 020506 (2013)

    MathSciNet  Google Scholar 

  18. Li, J.H., Liu, H.: Color image encryption based on advanced encryption standard algorithm with two-dimensional chaotic map. IET Inf. Secur. 7(4), 265–270 (2013)

    Article  Google Scholar 

  19. Wu, Y., Yang, G., Jin, H., Noonan, J.P.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014-1-013014-15 (2012)

    Article  Google Scholar 

  20. Hua, Z.Y., Zhou, Y.C., Pun, C.M., Philip Chen, C.L.: 2D Sine Logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

  21. Chen, G.R., Mao, Y.B., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, R.S.: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Opt. Commun. 284(22), 5290–5298 (2011)

    Article  Google Scholar 

  23. Hiroto, T., Toshimitsu, U., Satoshi, K.: A high-dimensional chaotic discrete-time neuron model and bursting phenomena. Phys. Lett. A 308(1), 41–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolmogorov, A.N.: Three approaches to the definition of the concept ‘quantity of information’. Probl. Peredachi Inf. 1, 3–11 (1965)

    MathSciNet  MATH  Google Scholar 

  25. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, W., Zhang, J., Yu, W., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31(1), 61–68 (2009)

    Article  Google Scholar 

  27. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  28. Nadia, M., Jonas, D.H., Kjaer, T.W., Morabito, F.C.: Differentiating interictal and ictal states in childhood absence epilepsy through permutation Rényi entropy. Entropy 17(7), 4627–4643 (2015)

    Article  Google Scholar 

  29. He, D., He, C., Jiang, L.G., Zhu, H.W., Hu, G.R.: A chaotic map with infinite collapses. Proc. TENCON 3, 95–99 (2000)

    MATH  Google Scholar 

  30. Shen, C.W., Yu, S.M., Lu, J.H., Chen, G.R.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model. IEEE Trans. Circuits I 61(8), 2380–2389 (2014)

    Google Scholar 

  31. Sun, K.H., Duo Li-kun, A., Duo, L.K., Wang, H.H., Zhong, K.: Multiple coexisting attractors and hysteresis in the generalized Ueda oscillator. Math. Probl. Eng. 2013(8), 1–7 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61573383) and the Innovation Project of Graduate of Central South University (Grant Nos. 2016zzts230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Sun, K. & He, S. SF-SIMM high-dimensional hyperchaotic map and its performance analysis. Nonlinear Dyn 89, 2521–2532 (2017). https://doi.org/10.1007/s11071-017-3601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3601-3

Keywords

Navigation