Skip to main content
Log in

Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By simplifying connection topology of Hopfield neural network (HNN) with three neurons, a kind of HNN-based nonlinear system is proposed. Taking a coupling-connection weight as unique adjusting parameter and utilizing conventional dynamical analysis methods, dynamical behaviors with the variation of the adjusting parameter are discussed and coexisting multiple attractors’ behavior under different state initial values are investigated. The results imply that the HNN-based system displays point, periodic, and chaotic behaviors as well as period-doubling and tangent bifurcation routes; particularly, this system exhibits some striking phenomena of coexisting multiple attractors, such as, a pair of single-scroll chaotic attractors accompanied with a pair of periodic attractors, a pair of periodic attractors with two periodicities, and so on. Of particular interest, it should be highly significant that a hardware circuit of the HNN-based system is developed by using commercially available electronic components and many kinds of coexisting multiple attractors are captured from the hardware experiments. The results of the experimental measurements have well consistency to those of MATLAB and PSpice simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    Article  MATH  Google Scholar 

  2. Laskowski, Ł.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. Appl. 23(7), 2435–2450 (2013)

    Article  Google Scholar 

  3. Pajeras, G., Cruz, J.M., Aranda, J.: Relaxation by Hopfield network in stereo image matching. Pattern Recognit. 31(5), 561–574 (1998)

    Article  Google Scholar 

  4. Brosch, T., Neumann, H.: Computing with a canonical neural circuits model with pool normalization and modulating feedback. Neural Comput. 26(12), 2735–2789 (2014)

    Article  MathSciNet  Google Scholar 

  5. Wen, S., Zeng, Z., Huang, T., Meng, Q., Yao, W.: Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1493–1502 (2015)

    Article  MathSciNet  Google Scholar 

  6. Yang, J., Wang, L.D., Wang, Y., Guo, T.T.: A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227, 142–148 (2017)

    Article  Google Scholar 

  7. Trejo-Guerra, R., Tlelo-Cuautle, E., Carbajal-Gómez, V.H., Rodriguez-Gómez, G.: A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 219(10), 5113–5122 (2013)

    MATH  MathSciNet  Google Scholar 

  8. Bao, B.C., Li, Q.D., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26(4), 043111 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chen, M., Xu, Q., Lin, Y., Bao, B.C.: Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn. 87(2), 789–802 (2017)

    Article  Google Scholar 

  10. Biswas, D., Karmakar, B., Banerjee, T.: A hyperchaotic time-delayed system with single-humped nonlinearity: theory and experiment. Nonlinear Dyn. 89(3), 1733–1743 (2017)

    Article  MathSciNet  Google Scholar 

  11. Biswas, D., Banerjee, T.: A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dyn. 83(4), 2331–2347 (2016)

    Article  MathSciNet  Google Scholar 

  12. Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70(1), 721–734 (2012)

    Article  MathSciNet  Google Scholar 

  13. Banerjee, T., Biswas, D.: Theory and experiment of a first-order chaotic delay dynamical system. Int. J. Bifurcat. Chaos 23, 1330020 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)

    Article  Google Scholar 

  15. Zheng, P.S., Tang, W.S., Zhang, J.X.: Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing 73, 2280–2285 (2010)

    Article  Google Scholar 

  16. Yang, X.S., Huang, Y.: Complex dynamics in simple Hopfield neural networks. Chaos 16, 033114 (2006)

    Article  MATH  Google Scholar 

  17. Li, Q.D., Tang, S., Zeng, H.Z., Zhou, T.T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    Article  MATH  Google Scholar 

  18. Zheng, P.S., Tang, W.S., Zhang, J.X.: Dynamic analysis of unstable Hopfield networks. Nonlinear Dyn. 61(3), 399–406 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rech, P.C.: Period-adding and spiral organization of the periodicity in a Hopfield neural network. Int. J. Mach. Learn. Cybern. 6(1), 1–6 (2015)

    Article  Google Scholar 

  20. Yuan, Q., Li, Q.D., Yang, X.S.: Horseshoe chaos in a class of simple Hopfield neural networks. Chaos Solitons Fractals 39(4), 1522–1529 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, Q.D., Tang, S., Zeng, H.Z., Zhou, T.T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    Article  MATH  Google Scholar 

  22. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C.K., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)

    Article  Google Scholar 

  23. Bersini, H., Sener, P.: The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks. Neural Netw. 15(10), 1197–1204 (2002)

    Article  Google Scholar 

  24. Babloyantz, A., Lourenco, C.: Brain chaos and computation. Int. J. Neural Syst. 7(4), 461–471 (1996)

    Article  Google Scholar 

  25. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)

    Article  Google Scholar 

  26. Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bao, B.C., Jiang, T., Xu, Q., Chen, M., Hu, H.G., Hu, Y.H.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)

    Article  Google Scholar 

  28. Njitacke, Z.T., Kengne, J., Fotsin, H.B., Negou, A.N., Tchiotsop, D.: Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos Solitons Fractals 91, 180–197 (2016)

    Article  MATH  Google Scholar 

  29. Bao, B.C., Qian, H., Xu, Q., Chen, M., Wang, J., Yu, Y.J.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci 11, 1–14 (2017). Article 81

    Article  Google Scholar 

  30. Zhusubaliyev, Z.T., Mosekilde, E., Rubanov, V.G., Nabokov, R.A.: Multistability and hidden attractors in a relay system with hysteresis. Physica D 306, 6–15 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)

    Article  MathSciNet  Google Scholar 

  32. Liu, Y.G., You, Z.S.: Multi-stability and almost periodic solutions of a class of recurrent neural networks. Chaos Solitons Fractals 33(2), 554–563 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Bao, G., Zeng, Z.: Multistability of periodic delayed recurrent neural network with memristors. Neural Comput. Appl. 23(7), 1963–1967 (2013)

    Article  Google Scholar 

  34. Ma, J., Wu, F.G., Ren, G.D., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  35. Geltrude, A., Al-Naimee, K., Euzzor, S., Meucci, R., Arecchi, F.T., Goswami, B.K.: Feedback control of bursting and multistability in chaotic systems. Coummun. Nonlinear Sci. Numer. Simul. 17(7), 3031–3039 (2012)

  36. Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24(3), 1450034 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcat Chaos 23(5), 1350093 (2013)

    Article  MathSciNet  Google Scholar 

  39. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, C.B., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurcat Chaos 24(10), 1450131 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)

    Article  Google Scholar 

  42. Shabunin, A.V.: Controlling phase multistability in coupled period-doubling oscillators. Chaos 23(1), 013102 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Morfu, S., Nofiele, B., Marquié, P.: On the use of multistability for image processing. Phys. Lett. A 367, 192–198 (2007)

    Article  MATH  Google Scholar 

  44. Hu, X.Y., Liu, C.X., Liu, L., Ni, J.K., Li, S.L.: An electronic implementation for Morris Lecar neuron model. Nonlinear Dyn. 84(4), 2317–2332 (2016)

    Article  MathSciNet  Google Scholar 

  45. Duan, S.K., Liao, X.F.: An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys. Lett. A 369, 37–43 (2007)

    Article  Google Scholar 

  46. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  47. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Gerardo, D.L.F.L.: Engineering Applications of FPGAs: Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems. Springer, Berlin (2016)

    Book  Google Scholar 

  48. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nunez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  49. Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)

    Article  Google Scholar 

  50. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity through conjugate self-feedback: theory and experiment. Phys. Rev. E 94, 042226 (2016)

    Article  Google Scholar 

  51. Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 51, 39–49 (2017)

    Article  Google Scholar 

  52. Muñoz-Pacheco, J.M., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sánchez-López, C., Trejo-Guerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundations of China under Grant Nos. 51777016, 61705021, 61601062, 11602035, and 51607013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Qian, H., Wang, J. et al. Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn 90, 2359–2369 (2017). https://doi.org/10.1007/s11071-017-3808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3808-3

Keywords

Navigation