Skip to main content
Log in

Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A sliding mode controller based on an extended disturbance observer is investigated to control a class of underactuated system in this paper. By using strict feedback technique, the underactuated system is presented as a special cascade form. First, an extended disturbance observer is designed to estimate the unknown external disturbances and model uncertainties of the underactuated system. Furthermore, a sliding mode control strategy is proposed to stabilize the underactuated part directly and drive the variables to the sliding mode surface. Finally, combining the sliding mode controller with the extended disturbance observer, a sliding mode controller with disturbance observer is designed. The stability of the overall system is proved and a numerical example is presented to illustrate the effectiveness of the proposed disturbance observer and controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui, M., Liu, W., Liu, H., Jiang, H., Wang, Z.: Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83(1), 667–683 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Huang, J., Guan, Z., Matsuno, T., Fukuda, T., Sekiyama, K.: Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Trans. Robot. 26(4), 750–758 (2010)

    Article  Google Scholar 

  3. Spong, M.W.: Swing up control of the Acrobot. In: IEEE International Conference on Robotics and Automation, pp. 2356–2361, San Diego (1994)

  4. Temel, T., Ashrafiuon, H.: sliding-mode speed controller for tracking of underactuated surface vessels with extended Kalman filter. Electron. Lett. 51(6), 467–469 (2015)

    Article  Google Scholar 

  5. Chen, M., Jiang, B., Cui, R.: Actuator fault-tolerant control of ocean surface vessels with input saturation. Int. J. Robust Nonlinear Control 26(3), 542–564 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments. IEEE/ASME Trans. Mechatron. 20(5), 2107–2119 (2015)

    Article  Google Scholar 

  7. Tuan, L., Lee, S., Ko, D., Cong, L.: Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. Int. J. Robust Nonlinear Control 24(18), 3372–3386 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhao, X., Shi, P., Zheng, X., Zhang, J.: Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans. Neural Netw. Syst. 27(9), 1976–1982 (2016)

    Article  MathSciNet  Google Scholar 

  9. Yin, C., Cheng, Y., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huang, C., Wang, W., Chiu, C.: Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE Trans. Ind. Electron. 58(7), 2988–3001 (2011)

    Article  Google Scholar 

  11. Saleh, M., Shamsi, J.: Disturbance observer and finite-time tracker design of disturbed third-order nonholonomic systems using terminal sliding mode. J. Vib. Control 23(2), 181–189 (2017)

    Article  MathSciNet  Google Scholar 

  12. Chiu, C., Peng, Y., Lin, Y.: Intelligent backstepping control for wheeled inverted pendulum. Expert Syst. Appl. 38(4), 3364–3371 (2011)

    Article  MATH  Google Scholar 

  13. Lee, L., Huang, P., Shih, Y.: Adaptive fuzzy sliding mode control to overhead crane by CCD sensor. In: IEEE International Conference on Control Applications, pp. 474–478, Santiago (2011)

  14. Xi, Z., Hesketh, T.: Discrete time integral sliding mode control for overhead crane with uncertainties. IET Control Theory Appl. 4(10), 2071–2081 (2010)

    Article  MathSciNet  Google Scholar 

  15. Uchiyama, N.: Robust control of rotary crane by partial-state feedback with integrator. Mechatronics 19(8), 1294–1302 (2009)

    Article  Google Scholar 

  16. Chun, Y., Chen, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhao, X., Yang, H., Xia, W., Wang, X.: Adaptive fuzzy hierarchical sliding mode control for a class of MIMO nonlinear time-delay systems with input saturation. IEEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2016.2594273

  18. Mei, J., Jiang, M., Xu, W., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2462–2478 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fan, Y., Liu, H., Zhu, Y., Mei, J.: Fast synchronization of complex dynamical networks with time-varying delay via periodically intermittent control. Neurocomputing 205, 182–194 (2016)

    Article  Google Scholar 

  20. Sankaranaryanan, V., Mahindrakar, A.-D.: Control of a class of underactuated mechanical systems using sliding modes. IEEE Trans. Robot. 25(2), 459–467 (2009)

  21. Huang, J., Ding, F., Fukuda, T., Matsuno, T.: Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Technol. 20(5), 1607–1617 (2013)

    Article  Google Scholar 

  22. Saleh, M.: Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems. Complexity 21(5), 117–124 (2016)

    Article  MathSciNet  Google Scholar 

  23. McNinch, L.C., Ashrafiuon, H.: Predictive and sliding mode cascade control for unmanned surface vessels. In: 2011 American Control Conference, pp. 184–189, San Francisco, CA (2011)

  24. Chen, W.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  25. Xing, K., Huang, J., Wang, Y.: Tracking control on pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer. IET Control Theory Appl. 4(10), 2058–2070 (2010)

    Article  MathSciNet  Google Scholar 

  26. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  27. Qu, S., Xia, X., Zhang, J.: Dynamics of discrete-time sliding mode control uncertain systems with a disturbance compensator. IEEE Trans. Ind. Electron. 61(7), 3502–3511 (2014)

    Article  Google Scholar 

  28. Ginoya, D., Shendge, P., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1992 (2014)

    Article  Google Scholar 

  29. Godbole, A.A., Kolhe, J.P., Talole, S.E.: Performance analysis of generalized extended state observer in tackling sinusoidal disturbances. IEEE Trans. Control Syst. Technol. 21(6), 2212–2223 (2013)

    Article  Google Scholar 

  30. Wang, J., Wu, Y., Dong, X.: Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer. Nonlinear Dyn. 8(3), 1489–1510 (2015)

    Article  MATH  Google Scholar 

  31. Saleh, M.: Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21(2), 239–244 (2015)

    Article  MathSciNet  Google Scholar 

  32. Saleh, M.: An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1), 53–60 (2015)

    MATH  MathSciNet  Google Scholar 

  33. Saleh, M.: A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. J. Comput. Nonlinear Dyn. 11(021011), 1–9 (2016)

    Google Scholar 

  34. Wu, S.T.: Remote vibration control for flexible beams subject to harmonic disturbances. J. Dyn. Syst. Meas. Control 126(1), 198–201 (2004)

    Article  Google Scholar 

  35. Reza, O.: Normal forms for underactuated mechanical system with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Spong, M.W.: The swing up control problem for the acrobot. IEEE Trans. Control Syst. 15(1), 49–55 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grants 61530418 and 61473130. This work is also supported by Fundamental Research Funds for the Central Universities under Grant CZQ15015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Huang, J., Wang, Y. et al. Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form. Nonlinear Dyn 90, 2571–2582 (2017). https://doi.org/10.1007/s11071-017-3824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3824-3

Keywords

Navigation