Skip to main content
Log in

Nonlinear damping in large-amplitude vibrations: modelling and experiments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Experimental data clearly show a strong and nonlinear dependence of damping from the maximum vibration amplitude reached in a cycle for macro- and microstructural elements. This dependence takes a completely different level with respect to the frequency shift of resonances due to nonlinearity, which is commonly of 10–25% at most for shells, plates and beams. The experiments show that a damping value over six times larger than the linear one must be expected for vibration of thin plates when the vibration amplitude is about twice the thickness. This is a huge change! The present study derives accurately, for the first time, the nonlinear damping from a fractional viscoelastic standard solid model by introducing geometric nonlinearity in it. The damping model obtained is nonlinear, and its frequency dependence can be tuned by the fractional derivative to match the material behaviour. The solution is obtained for a nonlinear single-degree-of-freedom system by harmonic balance. Numerical results are compared to experimental forced vibration responses measured for large-amplitude vibrations of a rectangular plate (hardening system), a circular cylindrical panel (softening system) and a clamped rod made of zirconium alloy (weak hardening system). Sets of experiments have been obtained at different harmonic excitation forces. Experimental results present a very large damping increase with the peak vibration amplitude, and the model is capable of reproducing them with very good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, part 1: modelling and experiments. Int. J. Non Linear Mech. 85, 23–40 (2016)

    Article  Google Scholar 

  2. Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparison. Int. J. Non Linear Mech. 85, 226–240 (2016)

    Article  Google Scholar 

  3. Davidovikj, D., Alijani, F., Cartamil-Bueno, S.J., van der Zant, H.S.J., Amabili, M., Steeneken, P.G.: Non-linear dynamics for mechanical characterization of two-dimensional materials. Nat. Commun. (2017) (accepted)

  4. Ravindra, B., Mallik, A.K.: Role of nonlinear dissipation in soft Duffing oscillators. Phys. Rev. E 49, 4950–4953 (1994)

    Article  Google Scholar 

  5. Trueba, J.L., Rams, J., Sanjuan, M.A.F.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurc. Chaos 10, 2257–2267 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012)

    Article  MATH  Google Scholar 

  7. Amabili, M.: Nonlinear vibrations of viscoelastic rectangular plates. J. Sound Vib. 362, 142–156 (2016)

    Article  Google Scholar 

  8. Balasubramanian, P., Ferrari, G., Amabili, M., Del Prado, Z.J.G.N.: Experimental and theoretical study on large amplitude vibrations of clamped rubber plates. Int. J. Non Linear Mech. 94, 36–45 (2017)

    Article  Google Scholar 

  9. Xia, Z.Q., Lukasiewicz, S.: Non-linear, free, damped vibrations of sandwich plates. J. Sound Vib. 175, 219–232 (1994)

    Article  MATH  Google Scholar 

  10. Xia, Z.Q., Lukasiewicz, S.: Nonlinear damped vibrations of simply-supported rectangular sandwich plates. Nonlinear Dyn. 8, 417–433 (1995)

    Google Scholar 

  11. Gottlieb, O., Habib, G.: Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum. J. Vib. Control 18, 536–547 (2012)

    Article  MathSciNet  Google Scholar 

  12. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011)

    Article  Google Scholar 

  13. Lifshitz, R., Cross, M.C.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Schuster, H.G. (ed.) Review of Nonlinear Dynamics and Complexity, Chap. 1, pp. 1–52. Wiley, Weinheim (2008)

    Google Scholar 

  14. Jeong, B., Cho, H., Yu, M.-F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system. ACS Nano 7, 8547–8553 (2013)

    Article  Google Scholar 

  15. De, S., Kunal, K., Aluru, N.R.: Nonlinear intrinsic dissipation in single layer MoS\(_2\) resonators. RSC Adv. 7, 6403 (2017)

    Article  Google Scholar 

  16. Elliot, S.J., Ghandchi Tehrani, M., Langley, R.S.: Nonlinear damping and quasi-linear modelling. Philos. Trans. R. Soc. Lond. A 373, 20140402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahmoudkhani, S., Haddadpour, H.: Nonlinear vibrations of viscoelastic sandwich plates under narrow-band random excitations. Nonlinear Dyn. 74, 165–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahmoudkhani, S., Haddadpour, H., Navazi, H.M.: The effects of nonlinearities on the vibration of viscoelastic sandwich plates. Int. J. Non Linear Mech. 62, 41–57 (2014)

    Article  Google Scholar 

  19. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Paola, M., Pirrotta, A., Valenza, A.: Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech. Mater. 43, 799–806 (2011)

    Article  Google Scholar 

  21. Pérez Zerpa, J.M., Canelas, A., Sensale, B., Bia Santana, D., Armentano, R.L.: Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element. Appl. Math. Model. 39, 4767–4780 (2015)

    Article  MathSciNet  Google Scholar 

  22. Spanos, P.D., Malara, G.: Nonlinear random vibrations of beams with fractional derivative elements. J. Eng. Mech. 140, 04014069 (2014)

    Article  Google Scholar 

  23. Rossihkin, Y.A., Shitikova, M.V.: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances. Int. J. Non Linear Mech. 41, 313–325 (2006)

    Article  MATH  Google Scholar 

  24. Amabili, M.: Reduced-order models for nonlinear vibrations, based on natural modes: the case of the circular cylindrical shell. Philos. Trans. R. Soc. A 371, 20120474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)

    Google Scholar 

  26. Christensen, R.M.: Theory of Viscoelasticity: An Introduction, 2nd edn. Reprinted by Dover, Mineola, NY, USA (1982)

  27. Lakes, R.: Viscoelastic Materials. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  28. Spiegel, M.R.: Fourier Analysis. Schaum’s Outline Series. McGraw-Hill, New York (1974)

    Google Scholar 

  29. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  30. Ortigueira, M.D., Machado, J.A.T.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zu, S., Cai, C., Spanos, P.D.: A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems. J. Sound Vib. 335, 304–320 (2015)

    Article  Google Scholar 

  32. Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291, 539–565 (2006)

    Article  Google Scholar 

  33. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support of the NSERC Discovery Grant and the Canada Research Chair Program. The present research was partially supported by the Qatar grant NPRP 7-032-2-016. Some graduate students and postdoctoral fellows helped with some experimental measurements and experimental set-up: Dr. Giovanni Ferrari, Dr. Silvia Carra, Mr. Prabakaran Balasubramanian, Mr. Carlo Augenti and Mr. Lorenzo Piccagli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Amabili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amabili, M. Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn 93, 5–18 (2018). https://doi.org/10.1007/s11071-017-3889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3889-z

Keywords

Navigation