Skip to main content

Advertisement

Log in

Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effects of nonlinear energy sink (NES) on vibration suppression of a simply supported beam are investigated in this work. The slow flow equations of the system are derived by using complexification–averaging method, and the validity of the derivation is verified. By comparing the vibration absorption of single and parallel NESs of equal mass, it is found that the latter exhibits superior vibration absorption performance. In addition, the parallel NES can eliminate higher branch responses of the system under the harmonic load. Furthermore, it is found that parallel NES can eliminate the higher branches of the system more effectively by tuning nonlinear stiffness and damping. Moreover, the thermal effect on natural frequencies of the simply supported beam is considered, and the influences of the parallel NES’s parameters on the energy dissipation rate under shock load are investigated. The nonlinear responses of the simply supported beam with parallel NES under harmonic load and with the increase of temperature are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gendelman, O.V., Starosvetsky, Y.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  MATH  Google Scholar 

  2. Gendelman, O.V., Starosvetsky, Y.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2008)

    MATH  Google Scholar 

  3. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237, 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: part I. J. Sound Vib. 311, 1228–1248 (2008)

    Article  Google Scholar 

  5. Lin, D.C., Oguamanam, D.C.D.: Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn. 82, 971–986 (2015)

    Article  MathSciNet  Google Scholar 

  6. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, K., Zhang, Y.W., Ding, H., Chen, L.Q.: The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions. Commun. Nonlinear Sci. Numer. Simul. 44, 184–192 (2017)

    Article  MathSciNet  Google Scholar 

  8. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312, 234–256 (2008)

    Article  Google Scholar 

  9. Pham, T.T., Lamarque, C.H., Pernot, S.: Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance. Commun. Nonlinear Sci. Numer. Simul. 16, 2279–2288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Domany, E., Gendelman, O.V.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol–Duffing oscillator with nonlinear energy sink. J. Sound Vib. 332, 5489–5507 (2013)

    Article  Google Scholar 

  11. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    Article  MATH  Google Scholar 

  12. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  13. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.: Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int. J. Nonlinear Mech. 79, 48–65 (2016)

    Article  Google Scholar 

  14. Zhang, Y.W., Yuan, B., Fang, B., Chen, L.Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017)

    Article  Google Scholar 

  15. Zhang, Y.W., Zhang, H., Hou, S., Xu, K.F., Chen, L.Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)

    Article  Google Scholar 

  16. Guo, C.Z., AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.H.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79, 527–538 (2015)

    Article  Google Scholar 

  17. Yang, K., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J Vib Acoust. 139, 021011 (2017)

    Article  Google Scholar 

  18. Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18, 1916–1930 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression of aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45, 693–711 (2007)

    Article  Google Scholar 

  20. Benarous, N., Gendelman, O.V.: Nonlinear energy sink with combined nonlinearities: enhanced mitigation of vibrations and amplitude locking phenomenon. J. Eng. Mech. 230, 21–33 (2016)

    Google Scholar 

  21. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138, 1–9 (2016)

    Google Scholar 

  22. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  23. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017)

    Article  Google Scholar 

  24. Gendelman, O.V., Sapsis, T., Vakakis, A.F.: Enhance passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011)

    Article  Google Scholar 

  25. Grinberg, I., Lanton, V., Gendelman, O.V.: Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing. Nonlinear Dyn. 69, 1889–1902 (2012)

    Article  MathSciNet  Google Scholar 

  26. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, T.A., Pernot, S.: Design criteria for optimally tuned nonlinear energy sinks- part 1: transient regime. Nonlinear Dyn. 69, 1–19 (2012)

    Article  Google Scholar 

  28. Zhang, Y.W., Zhang, Z., Chen, L.Q., Yang, T.Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82, 61–71 (2015)

    Article  MathSciNet  Google Scholar 

  29. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011)

  30. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part II: design theory and numerical results. Nonlinear Dyn. 67, 37–46 (2012)

  31. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11402170 and 11402165) and Tianjin Natural Science Foundation of China (Nos. 17JCYBJC18800 and 17JCZDJC38500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Chen.

Appendix

Appendix

$$\begin{aligned} J_{11}= & {} -S_1 , \quad J_{12} =\Omega -(S_2 +S_3 )\frac{1}{\Omega }, \\ J_{13}= & {} 0, \quad J_{14} =0, \\ J_{15}= & {} -\left( \sqrt{2}S_5 +\frac{3\sqrt{2}S_4 a_{30} b_{30} }{4\Omega ^{3}}\right) \sin \left( \frac{\pi d_1 }{l}\right) , \\ J_{16}= & {} -\frac{3\sqrt{2}S_4 a_{30} ^{2}(a_{30} ^{2}-b_{30} ^{2})}{4\Omega ^{3}}\sin \left( \frac{\pi d_1}{l}\right) , \\ J_{17}= & {} -\left( \sqrt{2}S_7 +\frac{3\sqrt{2}S_6 a_{40} b_{40} }{2\Omega ^{3}}\right) \sin \left( \frac{\pi d_2 }{l}\right) , \\ J_{18}= & {} -\left( \frac{3\sqrt{2}S_6 a_{40} ^{2}+9\sqrt{2}S_6 b_{40} ^{2}}{4\Omega ^{3}}\right) \sin \left( \frac{\pi d_2 }{l}\right) , \\ J_{21}= & {} (S_9 +S_{10} )\frac{1}{\Omega }-\Omega , \\ J_{22}= & {} -S_1 , \quad J_{23} =0, \quad J_{24} =0,\\ J_{25}= & {} \left( \frac{9\sqrt{2}S_4 a_{30} ^{2}+3\sqrt{2}S_4 b_{30} ^{2}}{4\Omega ^{3}}\right) \sin \left( \frac{\pi d_1 }{l}\right) , \\ J_{26}= & {} \left( \frac{3\sqrt{2}S_4 a_{30} b_{30} }{2\Omega ^{3}}-\sqrt{2}S_5\right) \sin \left( \frac{\pi d_1 }{l}\right) ,\\ J_{27}= & {} \frac{\left( 3\sqrt{2}S_6 b_{40} ^{2}+9\sqrt{2}S_6 a_{40} ^{2}\right) }{4\Omega ^{3}}\sin \left( \frac{\pi d_2 }{l}\right) ,\\ J_{28}= & {} \left( \frac{3\sqrt{2}S_6 a_{40} b_{40} }{2\Omega ^{3}}-\sqrt{2}S_7 \right) \sin \left( \frac{\pi d_2 }{l}\right) ,\\ J_{31}= & {} 0, \quad J_{32} =0,\\\end{aligned}$$
$$\begin{aligned} J_{33}= & {} -\left( \frac{\hbox {3}\sqrt{2}S_6 a_{40} b_{40} }{2\Omega ^{3}}+\sqrt{2}S_7 \right) \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{34}= & {} -\frac{(4\sqrt{2}S_6 a_{40} ^{2}+9\sqrt{2}S_6 b_{40} ^{2})}{4\Omega ^{3}}\sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{35}= & {} -\mu , \quad J_{36} =\Omega -(S_9 +S_{10} )\frac{1}{\Omega }, \\ J_{37}= & {} -\left( \frac{3\sqrt{2}S_4 a_{30} b_{30} }{2\Omega ^{3}}+\sqrt{2}S_5 \right) \sin \left( \frac{2\pi d_1 }{l}\right) , \\ J_{38}= & {} -\frac{\hbox {(3}\sqrt{2}S_4 a_{30} ^{2}+\hbox {9}\sqrt{2}S_4 b_{30} ^{2})}{4\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) , \\ J_{41}= & {} 0, \quad J_{42} =0,\\ J_{43}= & {} (S_9 +S_{10} )\frac{1}{\Omega }-\Omega , \quad J_{44} =-S_1, \\ J_{45}= & {} \left( \frac{\hbox {3}\sqrt{2}S_4 b_{30} ^{2}\hbox {+9}\sqrt{2}S_4 a_{30} ^{2}}{4\Omega ^{3}}\right) \sin \left( \frac{2\pi d_1 }{l}\right) , \\ J_{46}= & {} \left( \frac{\hbox {3}\sqrt{2}S_4 a_{30} b_{30} }{2\Omega ^{3}}-\sqrt{2}S_5 \right) \sin \left( \frac{2\pi d_1 }{l}\right) , \\ J_{47}= & {} \left( \frac{\hbox {3}\sqrt{2}S_6 b_{40} ^{2}+\hbox {9}\sqrt{2}S_6 a_{40} ^{2}}{4\Omega ^{3}}\right) \sin \left( \frac{2\pi d_2 }{l}\right) , \\ J_{48}= & {} \left( \frac{\hbox {3}\sqrt{2}S_6 a_{40} b_{40} }{2\Omega ^{3}}-\sqrt{2}S_7 \right) \sin \left( \frac{2\pi d_2 }{l}\right) , \\ J_{51}= & {} -\sqrt{2}S_1 \sin \left( \frac{\pi d_1 }{l}\right) ,\\ \end{aligned}$$
$$\begin{aligned} J_{52}= & {} -\frac{\sqrt{2}(S_2 +S_3 )}{\Omega }\sin \left( \frac{\pi d_1}{l}\right) , \\ J_{53}= & {} -\sqrt{2}S_1 \sin \left( \frac{2\pi d_1 }{l}\right) , \\ J_{54}= & {} -(S_9 +S_{10} )\frac{\sqrt{2}}{\Omega }\sin \left( \frac{2\pi d_1 }{l}\right) ,\\ J_{55}= & {} -\left( \frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}+2\right) \sin ^{2}\left( \frac{\pi d_1 }{l}\right) -\frac{S_5 }{\varepsilon _1 }\\&-\left( 2S_5+\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\right) \sin ^{2}\left( \frac{2\pi d_1 }{l}\right) -\frac{3S_4 a_{30} b_{30} }{2\varepsilon _1 \Omega ^{3}},\\ J_{56}= & {} \Omega -\frac{\left( 3S_4 a_{30} ^{2}+9S_4 b_{30} ^{2}\right) }{4\varepsilon _1 \Omega ^{3}}\\&-\left( \frac{9S_4 b_{30} ^{2}+3S_4 a_{30} ^{2}}{2\Omega ^{3}}\right) \sin ^{2}\left( \frac{2\pi d_1}{l}\right) \\&-\left( \frac{9S_4 b_{30} ^{2}+3S_4 a_{30} ^{2}}{2\Omega ^{3}}\right) \sin ^{2}\left( \frac{\pi d_1 }{l}\right) ,\\ J_{57}= & {} -2S_7 \sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2}{l}\right) \\&-2S_7 \sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2}{l}\right) \\&-\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&-\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{58}= & {} -\frac{(9S_6 b_{40} ^{2}+3S_6 a_{40} ^{2})}{2\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&-\frac{\left( 9S_6b_{40} ^{2}+3S_6 a_{40} ^{2}\right) }{2\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ \end{aligned}$$
$$\begin{aligned} J_{61}= & {} \frac{\sqrt{2}(S_2 +S_3 )}{\Omega }\sin \left( \frac{\pi d_1 }{l}\right) ,\\ J_{62}= & {} -\sqrt{2}S_1 \sin (\frac{\pi d_1 }{l}),\\ J_{63}= & {} -\frac{\sqrt{2}(S_9 +S_{10} )}{\Omega }\sin \left( \frac{2\pi d_1 }{l}\right) ,\\ J_{64}= & {} -\sqrt{2}S_6 \sin \left( \frac{2\pi d_1 }{l}\right) ,\\ J_{65}= & {} -\Omega +\frac{9S_4 a_{30} ^{2}+3S_4 b_{30} ^{2}}{4\varepsilon _1 \Omega ^{3}} \\&+\frac{(9S_4 a_{30} ^{2}+3S_4 b_{30} ^{2})}{2\Omega ^{3}}\sin ^{2}(\frac{\pi d_1 }{l}) \\&+\frac{(9S_4a_{30} ^{2}+3S_4 b_{30} ^{2})}{2\Omega ^{3}}\sin ^{2}(\frac{2\pi d_1}{l}), \\ J_{66}= & {} -2S_5 \sin ^{2}\left( \frac{\pi d_1 }{l}\right) -\frac{S_5 }{\varepsilon _1 }-2S_5 \sin ^{2}\left( \frac{2\pi d_1 }{l}\right) \\&+\frac{3S_4 a_{30} b_{30} }{2\varepsilon _1 \Omega ^{3}}+\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin ^{2}\left( \frac{\pi d_1 }{l}\right) \\&+\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin ^{2}\left( \frac{2\pi d_1 }{l}\right) , \\ J_{67}= & {} \frac{\left( 3S_6 b_{40} ^{2}+9S_6 b_{40} ^{2}\right) }{2\Omega ^{3}}\sin (\frac{\pi d_1 }{l})\sin (\frac{\pi d_2 }{l}) \\&+\frac{(3S_6 b_{40} ^{2}+9S_6 b_{40} ^{2})}{2\Omega ^{3}}\sin (\frac{2\pi d_1 }{l})\sin (\frac{2\pi d_2 }{l}), \\ J_{68}= & {} -2S_7 \sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2}{l}\right) \\&-2S_7 \sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2}{l}\right) \\&+\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&+\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) , \\ J_{71}= & {} -\sqrt{2}S_1 \sin \left( \frac{\pi d_2 }{l}\right) ,\\ \end{aligned}$$
$$\begin{aligned} J_{72}= & {} -\frac{\sqrt{2}(S_2 +S_3 )}{\Omega }\sin \left( \frac{\pi d_2 }{l}\right) ,\\ J_{73}= & {} -\sqrt{2}S_1 \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{74}= & {} -\frac{\sqrt{2}(S_9 +S_{10} )}{\Omega }\sin \left( \frac{2\pi d_1 }{l}\right) ,\\ J_{75}= & {} -2S_5 \sin (\frac{\pi d_1 }{l})\sin \left( \frac{\pi d_2}{l}\right) \\&-2S_5 \sin (\frac{2\pi d_1 }{l})\sin \left( \frac{2\pi d_2}{l}\right) \\&-\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&-\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) , \\ J_{76}= & {} -\frac{(3S_4 b_{30} ^{2}+9S_4 b_{30} ^{2}}{2\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&-\frac{\left( 3S_4b_{30} ^{2}+9S_4 b_{30} ^{2}\right) }{2\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) , \\ J_{77}= & {} -2S_7 \sin ^{2}\left( \frac{\pi d_2 }{l}\right) -\frac{S_7 }{\varepsilon _2 } \\&-2S_7 \sin ^{2}\left( \frac{2\pi d_2 }{l}\right) -\frac{3S_6 a_{40} b_{40} }{2\varepsilon _2 \Omega ^{3}} \\&-\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin ^{2}\left( \frac{\pi d_2 }{l}\right) \\&-\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin ^{2}\left( \frac{2\pi d_2 }{l}\right) ,\\ J_{78}= & {} \Omega +\frac{9S_6 a_{40} ^{2}+3S_6 b_{40} ^{2}}{4\varepsilon _2 \Omega ^{3}}\\&-\frac{\left( 9S_6 a_{40} ^{2}+3S_6 b_{40} ^{2}\right) }{2\Omega ^{3}}\sin ^{2}\left( \frac{\pi d_2 }{l}\right) \\&-\frac{\left( 9S_6a_{40} ^{2}+3S_6 b_{40} ^{2}\right) }{2\Omega ^{3}}\sin ^{2}\left( \frac{2\pi d_2}{l}\right) ,\\ \end{aligned}$$
$$\begin{aligned} J_{81}= & {} \frac{\sqrt{2}(S_9 +S_{10} )}{\Omega }\sin \left( \frac{\pi d_2 }{l}\right) ,\\ J_{82}= & {} -\sqrt{2}S_1 \sin \left( \frac{\pi d_2 }{l}\right) ,\\ J_{83}= & {} -\frac{\sqrt{2}(S_2 +S_3 )}{\Omega }\sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{84}= & {} -\sqrt{2}S_4 \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{85}= & {} -\Omega +\frac{9S_6 a_{40} ^{2}+3S_6 b_{40} ^{2}}{4\varepsilon _2 \Omega ^{3}}\\&+\frac{\left( 9S_6 a_{40} ^{2}+3S_6 b_{40} ^{2}\right) }{2\Omega ^{3}}\sin ^{2}\left( \frac{\pi d_2 }{l}\right) \\&+\frac{\left( 9S_6a_{40} ^{2}+3S_6 b_{40} ^{2}\right) }{2\Omega ^{3}}\sin ^{2}\left( \frac{2\pi d_2}{l}\right) , \\ J_{86}= & {} -2S_7 \sin ^{2}(\frac{\pi d_2 }{l})-\frac{S_7 }{\varepsilon _2 }-2S_7 \sin ^{2}\left( \frac{2\pi d_2 }{l}\right) \\&+\frac{3S_6 a_{40} b_{40} }{2\varepsilon _2 \Omega ^{3}}+\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin ^{2}\left( \frac{\pi d_2 }{l}\right) \\&+\frac{3S_6 a_{40} b_{40} }{\Omega ^{3}}\sin ^{2}\left( \frac{2\pi d_2 }{l}\right) , \\ J_{87}= & {} \frac{\left( 3S_4 b_{30} ^{2}+9S_4 b_{30} ^{2}\right) }{2\Omega ^{3}}\sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2 }{l}\right) \\&+\frac{(3S_4 b_{30} ^{2}+9S_4 b_{30} ^{2})}{2\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) ,\\ J_{88}= & {} -2S_5 \sin \left( \frac{\pi d_1 }{l}\right) \sin \left( \frac{\pi d_2}{l}\right) \\&-2S_5 \sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2}{l}\right) \\&+\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin (\frac{\pi d_1 }{l})\sin \left( \frac{\pi d_2 }{l}\right) \\&+\frac{3S_4 a_{30} b_{30} }{\Omega ^{3}}\sin \left( \frac{2\pi d_1 }{l}\right) \sin \left( \frac{2\pi d_2 }{l}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.E., He, W., Zhang, W. et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn 91, 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3917-z

Keywords

Navigation