Skip to main content
Log in

A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a general formulation of a class of uniaxial phenomenological models, able to accurately simulate hysteretic phenomena in rate-independent mechanical systems and materials, which requires only one history variable and leads to the solution of a scalar equation for the evaluation of the generalized force. Two specific instances of the class, denominated Bilinear and Exponential Models, are developed as an example to illustrate the peculiar features of the formulation. The Bilinear Model, that is one of the simplest hysteretic models which can be emanated from the proposed class, is first described to clarify the physical meaning of the quantities adopted in the formulation. Specifically, the potentiality of the proposed class is witnessed by the Exponential Model, able to simulate more complex hysteretic behaviors of rate-independent mechanical systems and materials exhibiting either kinematic hardening or softening. The accuracy and the computational efficiency of this last model are assessed by carrying out nonlinear time history analyses, for a single degree of freedom mechanical system having a rate-independent kinematic hardening behavior, subjected either to a harmonic or to a random force. The relevant results are compared with those obtained by exploiting the widely used Bouc–Wen Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Asano, K., Iwan, W.: An alternative approach to the random response of bilinear hysteretic systems. Earthq. Eng. Struct. Dyn. 12(2), 229–236 (1984)

    Article  Google Scholar 

  2. Baber, T., Noori, M.: Random vibration of degrading, pinching systems. J. Eng. Mech. ASCE 111(8), 1010–1026 (1985)

    Article  Google Scholar 

  3. Baber, T., Wen, Y.: Random vibration of hysteretic, degrading systems. J. Eng. Mech. ASCE 107, 1069–1087 (1981)

    Google Scholar 

  4. Bahn, B., Hsu, C.: Stress–strain behaviour of concrete under cyclic loading. ACI Mater. J. 95(2), 178–193 (1998)

    Google Scholar 

  5. Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  6. Bertotti, G.: Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic Press, San Diego (1998)

    Google Scholar 

  7. Besseling, J.: A theory of elastic, plastic, and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep. J. Appl. Mech. ASME 25, 529–536 (1958)

    MATH  Google Scholar 

  8. Bouc, R.: Modele mathematique d’hysteresis. Acustica 24, 16–25 (1971)

    MATH  Google Scholar 

  9. Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83(1), 23–39 (2016)

    Article  Google Scholar 

  10. Carboni, B., Mancini, C., Lacarbonara, W.: Hysteretic beam model for steel wire ropes hysteresis identification. In: Structural Nonlinear Dynamics and Diagnosis, pp. 261–282, (2015)

  11. Caughey, T.: Random excitation of a system with bilinear hysteresis. J. Appl. Mech. ASME 27(4), 649–652 (1960)

    Article  MathSciNet  Google Scholar 

  12. Charalampakis, A., Koumousis, V.: Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314(3), 571–585 (2008)

    Article  Google Scholar 

  13. Coey, J.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  14. Dafalias, Y., Popov, E.: A model of nonlinearly hardening materials for complex loading. Acta Mech. 21(3), 173–192 (1975)

    Article  MATH  Google Scholar 

  15. Dafalias, Y., Popov, E.: Cyclic loading for materials with a vanishing elastic region. Nucl. Eng. Des. 41(2), 293–302 (1977)

    Article  Google Scholar 

  16. Dimian, M., Andrei, P.: Noise-Driven Phenomena in Hysteretic Systems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  17. Dominguez, A., Sedaghati, R., Stiharu, I.: Modeling and application of mr dampers in semi-adaptive structures. Comput. Struct. 86(3), 407–415 (2008)

    Article  Google Scholar 

  18. Duhem, P.: Die dauernden aenderungen und die thermodynamik. i. Zeitschrift für Physikalische Chemie 22(1), 545–589 (1897)

    Article  Google Scholar 

  19. Elnashai, A., Izzuddin, B.: Modelling of material non-linearities in steel structures subjected to transient dynamic loading. Earthq. Eng. Struct. Dyn. 22(6), 509–532 (1993)

    Article  Google Scholar 

  20. Fedele, R., Sessa, S., Valoroso, N.: Image correlation-based identification of fracture parameters for structural adhesives. Technische Mechanik 32(2), 195–204 (2012)

    Google Scholar 

  21. Formica, G., Lacarbonara, W.: Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites. Int. J. Plast. 88, 204–217 (2017)

    Article  Google Scholar 

  22. Ghobarah, A., Korol, R., Osman, A.: Cyclic behavior of extended end-plate joints. J. Struct. Eng. ASCE 118(5), 1333–1353 (1992)

    Article  Google Scholar 

  23. Giuffrè, A., Pinto, P.: Il comportamento del cemento armato per sollecitazioni cicliche di forte intensità. Giornale del Genio Civile 5, 391–408 (1970)

    Google Scholar 

  24. Greco, F., Raimondo, L., Serino, G., Vaiana, N.: A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures. Ann. Solid Struct. Mech (2017). DOI: 10.1007/s12356-017-0051-z.

  25. Gunston, T., Rebelle, J., Griffin, M.: A comparison of two methods of simulating seat suspension dynamic performance. J. Sound Vib. 278(1), 117–134 (2004)

    Article  Google Scholar 

  26. Hauser, H.: Energetic model of ferromagnetic hysteresis. J. Appl. Phys. 75(5), 2584–2597 (1994)

    Article  Google Scholar 

  27. Hodgdon, M.: Mathematical theory and calculations of magnetic hysteresis curves. IEEE Trans. Mag. 24(6), 3120–3122 (1988)

    Article  Google Scholar 

  28. Ikhouane, F., Hurtado, J., Rodellar, J.: Variation of the hysteresis loop with the bouc-wen model parameters. Nonlinear Dyn. 48(4), 361–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iwan, W.: On a class of models for the yielding behavior of continuous and composite systems. J. Appl. Mech. ASME 34(3), 612–617 (1967)

    Article  Google Scholar 

  30. Jiao, Y., Kishiki, S., Yamada, S., Ene, D., Konishi, Y., Hoashi, Y., Terashima, M.: Low cyclic fatigue and hysteretic behavior of u-shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings. Earthq. Eng. Struct. Dyn. 44(10), 1523–1538 (2015)

    Article  Google Scholar 

  31. Jiles, D., Atherton, D.: Ferromagnetic hysteresis. IEEE Trans. Mag. 19(5), 2183–2185 (1983)

    Article  Google Scholar 

  32. Jiles, D., Atherton, D.: Theory of ferromagnetic hysteresis. J. Appl. Phys. 55(6), 2115–2120 (1984)

    Article  Google Scholar 

  33. Kang, D., Jung, S., Nho, G., Ok, J., Yoo, W.: Application of bouc-wen model to frequency-dependent nonlinear hysteretic friction damper. J. Mech. Sci. Techn. 24(6), 1311–1317 (2010)

    Article  Google Scholar 

  34. Krieg, R.: A practical two surface plasticity theory. J. Appl. Mech. ASME 42(3), 641–646 (1975)

    Article  Google Scholar 

  35. Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32(3), 235–258 (2003)

    Article  MATH  Google Scholar 

  36. Laxalde, D., Thouverez, F., Sinou, J.: Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. Int. J. Non-Linear Mech. 41(8), 969–978 (2006)

    Article  MATH  Google Scholar 

  37. Lourenço, P., Ramos, L.: Characterization of cyclic behavior of dry masonry joints. J. Struct. Eng. ASCE 130(5), 779–786 (2004)

    Article  Google Scholar 

  38. Lubliner, J.: Plasticity Theory. Macmillan, New York (1990)

    MATH  Google Scholar 

  39. Majzoobi, G., Kashfi, M., Bonora, N., Iannitti, G., Ruggiero, A., Khademi, E.: Damage characterization of aluminum 2024 thin sheet for different stress triaxialities. Arch. Civ. Mech. Eng. 18(3), 702–712 (2018)

    Article  Google Scholar 

  40. Manzoori, A., Toopchi-Nezhad, H.: Application of an extended bouc-wen model in seismic response prediction of unbonded fiber-reinforced isolators. J. Earthq. Eng. 21(1), 87–104 (2017)

    Article  Google Scholar 

  41. Mayergoyz, I.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  42. Menegotto, M., Pinto, P.: Method of analysis for cyclically loaded r.c. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, Portugal (1973)

  43. Nelson, R., Dorfmann, A.: Parallel elastoplastic models of inelastic material behavior. J. Eng. Mech. ASCE 121(10), 1089–1097 (1995)

    Article  Google Scholar 

  44. Ok, J., Yoo, W., Sohn, J.: New nonlinear bushing model for general excitations using bouc–wen hysteretic model. Int. J. Autom. Technol. 9(2), 183–190 (2008)

    Article  Google Scholar 

  45. Özdemir, H.: Nonlinear transient dynamic analysis of yielding structures. Ph.D. Thesis, University of California, Berkeley, CA, USA (1976)

  46. Pacitti, A., Peigney, M., Bourquin, F., Lacarbonara, W.: Experimental data based cable tension identification via nonlinear static inverse problem. Proc. Eng. 199, 453–458 (2017)

    Article  Google Scholar 

  47. Piersol, A., Paez, T.: Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York (2010)

    Google Scholar 

  48. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)

    MATH  Google Scholar 

  49. Ramberg, W., Osgood, W.: Description of stress-strain curves by three parameters. Technical Notes 902, National Advisory Committee on Aeronautics (1943)

  50. Rosenbrock, H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 4, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ru, C., Chen, L., Shao, B., Rong, W., Sun, L.: A hysteresis compensation method of piezoelectric actuator: model, identification and control. Control Eng. Pract. 17(9), 1107–1114 (2009)

    Article  Google Scholar 

  52. Seo, J., Choi, I., Lee, J.: Static and cyclic behavior of wooden frames with tenon joints under lateral load. J. Struct. Eng. ASCE 125(3), 344–349 (1999)

    Article  Google Scholar 

  53. Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  54. Spizzuoco, M., Calabrese, A., Serino, G.: Innovative low-cost recycled rubber-fiber reinforced isolator: experimental tests and finite element analyses. Eng. Struct. 76, 99–111 (2014)

    Article  Google Scholar 

  55. Subramaniam, P., Banerjee, S.: A correction to damping ratio for hyperbolic–hysteretic model for clayey soil. Int. J. Geotech. Eng. 7(2), 124–129 (2013)

    Article  Google Scholar 

  56. Thomas, G., Weir, M., Hass, J., Giordano, F.: Thomas’ Calculus, 11th edn. Addison Wesley Longman, London (2004)

    Google Scholar 

  57. Tsai, C., Chiang, T., Chen, B., Lin, S.: An advanced analytical model for high damping rubber bearings. Earthq. Eng. Struct. Dyn. 32(9), 1373–1387 (2003)

    Article  Google Scholar 

  58. Vaiana, N.: Matlab codes for non-linear time history analysis of dynamic systems supported by wire rope isolators. Master Thesis, 2nd level Master in Emerging Technologies for Construction, University of Naples Federico II, Naples, Italy (2015)

  59. Vaiana, N.: Mathematical models and numerical methods for the simulation of the earthquake response of seismically base-isolated structures. Ph.D. Thesis, University of Naples Federico II, Naples, Italy (2017)

  60. Vaiana, N., Serino, G.: Simulation of dynamic behavior of seismic isolators using a parallel elasto-plastic model. WASET. Int. J. Civ. Environ. Eng. 11(2), 178–184 (2017)

    Google Scholar 

  61. Vaiana, N., Spizzuoco, M., Serino, G.: Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling. Eng. Struct. 140, 498–514 (2017)

    Article  Google Scholar 

  62. Valoroso, N., Sessa, S., Lepore, M., Cricrí, G.: Identification of mode-i cohesive parameters for bonded interfaces based on DCB test. Eng. Fract. Mech. 104, 56–79 (2013)

    Article  Google Scholar 

  63. Valoroso, N., Marmo, F., Sessa, S.: A novel shell element for nonlinear pushover analysis of reinforced concrete shear walls. Bull. Earthq. Eng. 13(8), 2367–2388 (2015)

    Article  Google Scholar 

  64. Visintin, A.: On hysteresis in elasto-plasticity and in ferromagnetism. Int. J. Non-Linear Mech. 37(8), 1283–1298 (2002)

    Article  MATH  Google Scholar 

  65. Wen, Y.: Method for random vibration of hysteretic systems. J. Eng. Mech. Divis. ASCE 102(2), 249–263 (1976)

    Google Scholar 

  66. Wen, Y.: Equivalent linearization for hysteretic systems under random excitation. J. Appl. Mech. ASME 47(1), 150–154 (1980)

    Article  MATH  Google Scholar 

  67. Wittke, H., Olfe, J., Rie, K.: Description of stress–strain hysteresis loops with a simple approach. Int. J. Fat. 19(2), 141–149 (1997)

    Article  Google Scholar 

  68. Zaiming, L., Katukura, H.: Markovian hysteretic characteristics of structures. J. Eng. Mech. ASCE 116(8), 1798–1811 (1990)

    Article  Google Scholar 

  69. Zhang, H., Foliente, G., Yang, Y., Ma, F.: Parameter identification of inelastic structures under dynamic loads. Earthq. Eng. Struct. Dyn. 31(5), 1113–1130 (2002)

    Article  Google Scholar 

  70. Zona, A., Dall’Asta, A.: Elastoplastic model for steel buckling-restrained braces. J. Constr. Steel Res. 68(1), 118–125 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Vaiana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaiana, N., Sessa, S., Marmo, F. et al. A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn 93, 1647–1669 (2018). https://doi.org/10.1007/s11071-018-4282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4282-2

Keywords

Navigation