Skip to main content
Log in

Accelerated stability transformation method for chaos control of discrete dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes the accelerated stability transformation method (ASTM) of chaos control to enhance the efficiency of stabilizing the unstable fixed points or periodic orbits of discrete dynamical systems, with fewer iterative number than the original STM. For each step of iteration, the ASTM scheme utilizes the STM formulation twice to control the step size in the oscillation direction and relaxes greatly the step size of direction normal to the oscillation direction and thus reduces computational efforts of chaos control remarkably. Four examples of nonlinear maps including the hyperchaotic system indicate that the proposed ASTM scheme is more efficient and accurate than STM scheme for stabilizing the unstable fixed points embedded in chaotic attractor. The convergence rate of ASTM scheme is closely related to the involutory matrix C and control parameter q. Moreover, two effective selecting rules of involutory matrix C are suggested by analyzing the eigenvalues of Jacobian matrix of the discrete systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  2. Chen, G.R., Dong, X.N.: From chaos to order: perspectives and methodologies in controlling chaotic nonlinear dynamical systems. Int. J. Bifurc. Chaos 3(6), 1363–1409 (1993)

    Article  MATH  Google Scholar 

  3. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329(3), 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  4. Lu, J.A., Wu, X.Q., Lü, J.H.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305(6), 365–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Ann. Rev. Control 29(1), 33–56 (2005)

    Article  Google Scholar 

  6. Capeáns, R., Sabuco, J., Sanjuán, M.A.: Parametric partial control of chaotic systems. Nonlinear Dyn. 86(2), 869–876 (2016)

    Article  MathSciNet  Google Scholar 

  7. Salarieh, H., Alasty, A.: Chaos control in an economic model via minimum entropy strategy. Chaos, Solitons Fractals 40(2), 839–847 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferreira, B.B., de Paula, A.S., Savi, M.A.: Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 44(8), 587–599 (2011)

    Article  Google Scholar 

  9. Singh, A., Gakkhar, S.: Controlling chaos in a food chain model. Math. Comput. Simul. 115, 24–36 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)

    Article  Google Scholar 

  12. Ahlborn, A., Parlitz, U.: Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Lett. 93, 264101 (2004)

    Article  Google Scholar 

  13. Le, L.B., Konishi, K., Hara, N.: Design and experimental verification of multiple delay feedback control for time-delay nonlinear oscillators. Nonlinear Dyn. 67(2), 1407–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pyragas, V., Pyragas, K.: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay. Phys. Lett. A 375(44), 3866–3871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, C.X., Chen, Z.G.: Feedback control strategies for the Liu chaotic system. Phys. Lett. A 372(22), 4033–4036 (2008)

    Article  MATH  Google Scholar 

  16. Tao, C.H., Yang, C.D., Luo, Y., Xiong, H.X., Hu, F.: Speed feedback control of chaotic system. Chaos, Solitons Fractals 23(1), 259–263 (2005)

    Article  MATH  Google Scholar 

  17. Yassen, M.T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360(4–5), 582–587 (2007)

    Article  MATH  Google Scholar 

  18. Chen, H.H., Sheu, G.J., Lin, Y.L., Chen, C.S.: Chaos synchronization between two different chaotic systems via nonlinear feedback control. Nonlinear Anal. 70(12), 4393–4401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zheng, Y.A., Chen, G.R.: Fuzzy impulsive control of chaotic systems based on TS fuzzy model. Chaos Solitons Fractals 39(4), 2002–2011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vasegh, N., Khellat, F.: Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems. Chaos 23(4), 042101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Salarieh, H., Alasty, A.: Adaptive synchronization of two chaotic systems with stochastic unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 14(2), 508–519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1–2), 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmelcher, P., Diakonos, F.K.: Detecting unstable periodic orbits of chaotic dynamical systems. Phys. Rev. Lett. 78(25), 4733–4736 (1997)

    Article  Google Scholar 

  25. Schmelcher, P., Diakonos, F.K.: General approach to the localization of unstable periodic orbits in chaotic dynamical systems. Phys. Rev. E 57(3), 2739 (1998)

    Article  Google Scholar 

  26. Pingel, D., Schmelcher, P., Diakonos, F.K.: Detecting unstable periodic orbits in chaotic continuous-time dynamical systems. Phys. Rev. E 64(2), 026214 (2001)

    Article  Google Scholar 

  27. Pingel, D., Schmelcher, P., Diakonos, F.K.: Stability transformation: a tool to solve nonlinear problems. Phys. Rep. 400(2), 67–148 (2004)

    Article  MathSciNet  Google Scholar 

  28. Yang, D.X., Zhou, J.L.: Connections among several chaos feedback control approaches and chaotic vibration control of mechanical systems. Commun. Nonlinear Sci. Numer. Simul. 19(11), 3954–3968 (2014)

    Article  MathSciNet  Google Scholar 

  29. Huang, W.H.: Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism. Phys. Rev. E 61(2), R1012 (2000)

    Article  Google Scholar 

  30. Bu, S.L., Wang, S.Q., Ye, H.Q.: Stabilizing unstable discrete systems. Phys. Rev. E 64(4), 046209 (2001)

    Article  Google Scholar 

  31. Yang, D.X., Yang, P.X.: Numerical instabilities and convergence control for convex approximation methods. Nonlinear Dyn. 61(4), 605–622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, D.X., Xiao, H.: Stability analysis and convergence control of iterative algorithms for reliability analysis and design optimization. J. Mech. Des. 135(3), 034501 (2013)

    Article  Google Scholar 

  33. Meng, Z., Li, G., Wang, B.P., Hao, P.: A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput. Struct. 146, 32–43 (2015)

    Article  Google Scholar 

  34. Keshtegar, B.: Stability iterative method for structural reliability analysis using a chaotic conjugate map. Nonlinear Dyn. 84(4), 2161–2174 (2016)

    Article  MathSciNet  Google Scholar 

  35. Meng, Z., Li, G., Yang, D.X., Zhan, L.C.: A new directional stability transformation method of chaos control for first order reliability analysis. Structural and Multidisciplinary Optimization 55(2), 601–612 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhou, J.L., Yang, D.X.: Chaos control of a new 3D autonomous system by stability transformation method. Nonlinear Dyn. 73(1–2), 565–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?— Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  38. Hitzl, D.L., Zele, F.: An exploration of the Hénon quadratic map. Phys. D 14(3), 305–326 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Y., Ma, X.K., Zhang, H.: Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control. Chaos Solitons Fractals 28(1), 244–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stefański, K.: Modelling chaos and hyperchaos with 3-D maps. Chaos Solitons Fractals 9(1–2), 83–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yan, Z.Y.: QS synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller. Phys. Lett. A 342(4), 309–317 (2005)

    Article  MATH  Google Scholar 

  42. Richter, H.: The generalized Henon maps: examples for higher-dimensional chaos. Int. J. Bifurc. Chaos 12(6), 1371–1384 (2002)

    Article  MATH  Google Scholar 

  43. Baier, G., Klein, M.: Maximum hyperchaos in generalized Hénon maps. Phys. Lett. A 151(6–7), 281–284 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The supports of the National Natural Science Foundation of China (Grant Nos. 51478086 and 11772079) and the National Key Research Development Program of China (Grant No. 2016YFB0201601) are much appreciated. Also, we greatly appreciate the anonymous reviewers for their insightful suggestions and comments on the early version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dixiong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Li, X., Chen, G. et al. Accelerated stability transformation method for chaos control of discrete dynamical systems. Nonlinear Dyn 94, 1195–1213 (2018). https://doi.org/10.1007/s11071-018-4418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4418-4

Keywords

Navigation