Skip to main content
Log in

Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\({{\varvec{A}}}_{ij} \) :

The stretching stiffness coefficients

\({\varvec{B}}_{ij} \) :

The coupling stiffness coefficients

\({\varvec{C}}\) :

Damping matrix

\({\varvec{D}}_{ij} \) :

The bending stiffness coefficients

\(E_1,E_2\) :

Yong’s modulus in the principal directions

Ei :

The error of the non-dimension y-coordinate of \(\hbox {NT}=i\) with respect to \(\hbox {NT}=6\)

\({\varvec{F}}(t)\) :

The point harmonic excitation

\(G_{12} \) :

Moduli of rigidity

H :

Thickness of the shell

\({\varvec{K}}, {\varvec{K}}_{\mathrm{spr}}\) :

Stiffness matrix, spring stiffness matrix

L :

Length of the shell

\({\varvec{M}}\) :

Mass matrix

\({\varvec{M}}_{x},{\varvec{M}}_{\theta },{\varvec{M}}_{x\theta }\) :

The moments of the in-plane stresses

N :

The number of terms for circumferential wave

\({\varvec{N}}_x,{\varvec{N}}_\theta ,{\varvec{N}}_{x\theta }\) :

The force of the in-plane stresses

NA:

The number of supported points

NS:

The number of supported arcs

NT:

The number of terms for Chebyshev polynomials

\({\varvec{Q}}\) :

Plane stresses–strain matrix

\({\overline{{\varvec{Q}}}} \) :

Transformation stiffness matrix

\({\varvec{Q}}^{\prime }\) :

The nonlinear vector

R :

Radius of the shell

\({\varvec{T}}_{\mathrm{s}} \) :

Transformation matrix

T :

Kinetic energy

\({\varvec{T}}_m^*\left( \xi \right) \) :

The admissible displacement functions

\(U_\varepsilon , U_{\mathrm{spr}} \) :

Strain energy, potential energy

\(\bar{{{\varvec{U}}}}, \bar{{{\varvec{V}}}}, \bar{{{\varvec{W}}}}\) :

The mode vector satisfying a boundary condition

\(a_m , b_m , c_m \) :

The unknown corresponding coefficients

\(f_0 \) :

The amplitude of harmonic excitation

\(k_{u} ,k_{v} ,k_{w} ,k_{\theta }\) :

Stiffness of axial, circumferential, radial, rotational spring per unit arc length

\({k}^{\prime }_u ,{k}^{\prime }_v ,{k}^{\prime }_w ,{k}^{\prime }_\theta \) :

Stiffness of axial, circumferential, radial, rotational spring

n :

The circumferential wave number

\({\varvec{q}}\) :

The generalized coordinates

t :

Time

uvw :

Displacement in the x, \(\theta \), z directions

\(\alpha \) :

The total length of supported arcs

\(\beta \) :

Angular orientation of fibers

\(\varepsilon _x,\varepsilon _\theta ,\gamma _{x\theta }\) :

The strains of the shell

\(\theta \) :

The constraint radian

\(\theta _s,\theta '_s\) :

The starting and ending radian of the sth arcs

\(\kappa _x,\kappa _\theta ,\kappa _{x\theta }\) :

The curvature of the shell

\(\mu _{12},\mu _{21}\) :

Poisson’s ratios

\(\xi \) :

The non-dimensional axial coordinate

\(\rho \) :

Mass density

\(\sigma _{\mathrm{x}} ,\sigma _{\mathrm{y}} ,\tau _{\mathrm{xy}}\) :

The stresses of the shell

\(\omega \) :

The frequency of harmonic excitation

\(\omega ^{*}\) :

The non-dimensional natural frequency

\(\omega _d\) :

The natural frequency of the shell

References

  1. Leissa, A.W., Nordgren, R.P.: Vibration of shells. J. Appl. Mech. 41(2), 544 (1993)

    Article  Google Scholar 

  2. Qatu, M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells. Appl. Mech. Rev. 55(5), 325–350 (2002)

    Article  Google Scholar 

  3. Qatu, M.S., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93(1), 14–31 (2010)

    Article  Google Scholar 

  4. Lam, K.Y., Loy, C.T.: Analysis of rotating laminated cylindrical shells by different thin shell theories. J. Sound Vib. 186(1), 23–35 (1995)

    Article  Google Scholar 

  5. Lam, K.Y., Loy, C.T.: Influence of boundary conditions and fibre orientation on the natural frequencies of thin orthotropic laminated cylindrical shells. Compos. Struct. 31(1), 21–30 (1995)

    Article  Google Scholar 

  6. Ip, K.H., Chan, W.K., Tse, P.C., Lai, T.C.: Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh–Ritz method. J. Sound Vib. 195(1), 117–135 (1996)

    Article  Google Scholar 

  7. Soldatos, K.P., Messina, A.: Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials. J. Sound Vib. 218(2), 219–243 (1998)

    Article  Google Scholar 

  8. Messina, A., Soldatos, K.P.: Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions. J. Sound Vib. 227(4), 749–768 (1999)

    Article  Google Scholar 

  9. Zhang, X.M.: Vibration analysis of cross-ply laminated composite cylindrical shells using the wave propagation approach. Appl. Acoust. 62(11), 1221–1228 (2001)

    Article  Google Scholar 

  10. Zhang, X.M.: Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach. Comput. Methods Appl. Mech. Eng. 191(19), 2057–2071 (2002)

    Article  Google Scholar 

  11. Shao, Z.S., Ma, G.W.: Free vibration analysis of laminated cylindrical shells by using Fourier series expansion method. J. Thermoplast. Compos. Mater. 20(6), 551–573 (2007)

    Article  Google Scholar 

  12. Jin, G., Ye, T., Chen, Y., Su, Z., Yan, Y.: An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions. Compos. Struct. 106(12), 114–127 (2013)

    Article  Google Scholar 

  13. Ye, T., Jin, G., Su, Z., Jia, X.: A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions. Arch. Appl. Mech. 84(4), 441–471 (2014)

    Article  Google Scholar 

  14. Song, X., Han, Q., Zhai, J.: Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method. Compos. Struct. 134, 820–830 (2015)

    Article  Google Scholar 

  15. Song, X., Zhai, J., Chen, Y., Han, Q.: Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method. Compos. Struct. 133, 1101–1115 (2015)

    Article  Google Scholar 

  16. Sun, W., Zhu, M., Wang, Z.: Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints. Aerosp. Sci. Technol. 63, 232–244 (2017)

    Article  Google Scholar 

  17. Qin, Z., Chu, F., Jean, Z.U.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  18. Chen, Y., Jin, G., Liu, Z.: Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints. Int. J. Mech. Sci. 74(3), 120–132 (2013)

    Article  Google Scholar 

  19. Xie, K., Chen, M., Zhang, L., Xie, D.: Free and forced vibration analysis of non-uniformly supported cylindrical shells through wave based method. Int. J. Mech. Sci. 128, 512–526 (2017)

    Article  Google Scholar 

  20. Ganapathi, M., Varadan, T.K.: Nonlinear free flexural vibrations of laminated circular cylindrical shells. Compos. Struct. 30(1), 33–49 (1995)

    Article  Google Scholar 

  21. Jansen, E.L.: The effect of static loading and imperfections on the nonlinear vibrations of laminated cylindrical shells. J. Sound Vib. 315(4–5), 1035–1046 (2008)

    Article  Google Scholar 

  22. Qu, Y., Long, X., Wu, S., Meng, G.: A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos. Struct. 98(3), 169–191 (2013)

    Article  Google Scholar 

  23. Qu, Y., Hua, H., Meng, G.: A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Compos. Struct. 95, 307–321 (2013)

    Article  Google Scholar 

  24. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332(24), 6434–6450 (2013)

    Article  Google Scholar 

  25. Yan, Q.W.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77(4), 1693–1707 (2014)

    Article  MathSciNet  Google Scholar 

  26. Dey, T., Ramachandra, L.S.: Non-linear vibration analysis of laminated composite circular cylindrical shells. Compos. Struct. 163, 89–100 (2017)

    Article  Google Scholar 

  27. Tang, Q., Li, C., Wen, B.: Analysis on forced vibration of thin-wall cylindrical shell with nonlinear boundary condition. Shock Vib. 2016(2016-2-18), 1–22 (2016)

  28. Tang, Q., Li, C., She, H., Wen, B.: Modeling and dynamic analysis of bolted joined cylindrical shell. Nonlinear Dynamics(5), 1–23 (2018)

    Google Scholar 

  29. Bich, D.H., Nguyen, N.X.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331(25), 5488–5501 (2012)

    Article  Google Scholar 

  30. Amabili, M., Pellicano, F., Paidoussis, M.: Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid. J. Fluids Struct. 12(7), 883–918 (1998)

    Article  Google Scholar 

  31. Pellicano, F., Amabili, M., PaïDoussis, M.P.: Effect of the geometry on the non-linear vibration of circular cylindrical shells. Int. J. Non-linear Mech. 37(7), 1181–1198 (2002)

    Article  Google Scholar 

  32. Reddy, J.N., Chandrashekhara, K.: Geometrically non-linear transient analysis of laminated, doubly curved shells. Int. J. Non-linear Mech. 20(2), 79–90 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The Project is supported by the China Natural Science Funds (No. 51575093) and the Fundamental Research Funds for the Central Universities (Nos. N160313001 and N170308028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendices

Appendix A: The strains of mid-surface and curvature

$$\begin{aligned} \varepsilon _{x\left( 0 \right) }= & {} \frac{\partial u}{L\partial \xi }+\frac{1}{2}\left( {\frac{\partial w}{L\partial \xi }} \right) ^{2} \end{aligned}$$
(A.1)
$$\begin{aligned} \varepsilon _{\theta \left( 0 \right) }= & {} \frac{1}{R}\frac{\partial v}{\partial \theta }+\frac{w}{R}+\frac{1}{2}\left( {\frac{\partial w}{R\partial \theta }} \right) ^{2} \end{aligned}$$
(A.2)
$$\begin{aligned} \gamma _{x\theta \left( 0 \right) }= & {} \frac{1}{R}\frac{\partial u}{\partial \theta }+\frac{\partial v}{L\partial \xi }+\frac{\partial w}{L\partial \xi }\frac{1}{R}\frac{\partial w}{\partial \theta } \end{aligned}$$
(A.3)
$$\begin{aligned} \kappa _x= & {} -\frac{\partial ^{2}w}{L^{2}\partial \xi ^{2}} \end{aligned}$$
(A.4)
$$\begin{aligned} \kappa _\theta= & {} \frac{1}{R^{2}}\frac{\partial v}{\partial \theta }-\frac{1}{R^{2}}\frac{\partial ^{2}w}{\partial \theta ^{2}} \end{aligned}$$
(A.5)
$$\begin{aligned} \kappa _{x\theta }= & {} \frac{1}{RL}\frac{\partial v}{\partial \xi }-\frac{2}{RL}\frac{\partial ^{2}w}{\partial \xi \partial \theta } \end{aligned}$$
(A.6)

Appendix B: The stretching, coupling and bending stiffness coefficients

$$\begin{aligned} A_{ij}= & {} \sum _{p=1}^3 {{\overline{Q}} _{ij}^p } (h_{p+1} -h_p ) \end{aligned}$$
(B.1)
$$\begin{aligned} B_{ij}= & {} \frac{1}{2}\sum _{p=1}^3 {{\overline{Q}} _{ij}^p } (h_{p+1}^2 -h_p^2 ) \end{aligned}$$
(B.2)
$$\begin{aligned} D_{ij}= & {} \frac{1}{3}\sum _{p=1}^3 {{\overline{Q}} _{ij}^p } (h_{p+1}^3 -h_p^3 ) \end{aligned}$$
(B.3)

where p is the pth layer of the shell. In addition, all the \(B_{ij}\) terms become zero for cylindrical shells laminated symmetrically with respect to their middle surfaces.

Appendix C: The mode vector U, V, and W

$$\begin{aligned} {{\bar{{\varvec{U}}}}^\mathrm{T}}= & {} \left[ {T^*\left( \xi \right) \cos \theta } \quad {T^*\left( \xi \right) \cos 2\theta } \cdots {T^*\left( \xi \right) \cos n\theta } \cdots {T^*\left( \xi \right) \cos N\theta } \quad 0 \right] \nonumber \\ \bar{{{\varvec{V}}}}^\mathrm{T}= & {} \left[ {T^*\left( \xi \right) \sin \theta } \quad {T^*\left( \xi \right) \sin 2\theta } \cdots {T^*\left( \xi \right) \sin n\theta } {\cdots } {T^*\left( \xi \right) \sin N\theta } \quad {0} \right] \nonumber \\ \bar{{{\varvec{W}}}}^\mathrm{T}= & {} \left[ {T^*\left( \xi \right) \cos \theta } \quad {T^*\left( \xi \right) \cos 2\theta } \cdots {T^*\left( \xi \right) \cos n\theta } \cdots {T^*\left( \xi \right) \cos N\theta } \quad {T^*\left( \xi \right) } \right] \end{aligned}$$
(C.1)

\(T_m^*\left( \xi \right) \) is a Chebyshev polynomial of displacement components, \(T_m^*\left( \xi \right) =T_m \left( {2\xi -1} \right) ,T_m \left( \xi \right) \) is the Chebyshev polynomials of the first kind, of which the recurrence expressions are given by

$$\begin{aligned} T_0 \left( \xi \right)= & {} 1,T_1 \left( \xi \right) =\xi ,T_{m+1} \left( \xi \right) \nonumber \\= & {} 2\xi T_m \left( \xi \right) -T_{m-1} \left( \xi \right) ,\left( {m\ge 2} \right) \end{aligned}$$
(C.2)

In the process of constructing Chebyshev polynomials, the polynomials are defined in the interval \([-\,1, 1]\), while \(\xi \in \left[ {0, 1} \right] \), and the transformation of coordinates from \(\xi \) to \(2\xi -1\) is necessary.

Appendix D: Expressions for the mass matrix

The mass matrix Min Eq. (17) is expressed as

$$\begin{aligned} {\varvec{M}}=\left[ {{\begin{array}{lll} {{\varvec{M}}^{uu}}&{} &{} \\ &{} {{\varvec{M}}^{vv}}&{} \\ &{} &{} {{\varvec{M}}^{ww}} \\ \end{array} }} \right] \end{aligned}$$
(D.1)

where

$$\begin{aligned} {\varvec{M}}^{uu}= & {} \rho \hbox {HLR}\int _0^1 {\int _0^{2\pi } {\left[ \bar{{{\varvec{U}}}}\bar{{{\varvec{U}}}}^{\mathrm{T}}\right] } } \mathrm{d}\theta \mathrm{d}\xi \end{aligned}$$
(D.2)
$$\begin{aligned} {\varvec{M}}^{vv}= & {} \rho \hbox {HLR}\int _0^1 {\int _0^{2\pi } {\left[ \bar{{{\varvec{V}}}}\bar{{{\varvec{V}}}}^{\mathrm{T}}\right] } } \mathrm{d}\theta \mathrm{d}\xi \end{aligned}$$
(D.3)
$$\begin{aligned} {\varvec{M}}^{ww}= & {} \rho \hbox {HLR}\int _0^1 {\int _0^{2\pi } {\left[ \bar{{{\varvec{W}}}}\bar{{{\varvec{W}}}}^{\mathrm{T}}\right] } } \mathrm{d}\theta \mathrm{d}\xi \end{aligned}$$
(D.4)

Appendix E: Expressions of the stiffness matrix

The stiffness matrix Kin Eq. (17) is expressed as

$$\begin{aligned} {\varvec{K}}=\left[ {{\begin{array}{ccc} {{\varvec{K}}^{uu}}&{} {\frac{1}{2}{\varvec{K}}^{uv}}&{} {\frac{1}{2}{\varvec{K}}^{uw}} \\ {\frac{1}{2}{\varvec{K}}^{uv}}&{} {{\varvec{K}}^{vv}}&{} {\frac{1}{2}{\varvec{K}}^{vw}} \\ {\frac{1}{2}{\varvec{K}}^{uw}}&{} {\frac{1}{2}{\varvec{K}}^{vw}}&{} {{\varvec{K}}^{ww}} \\ \end{array} }} \right] \end{aligned}$$
(E.1)

where

$$\begin{aligned} {\varvec{K}}^{uu}= & {} \frac{L}{R}\int _0^1 \int _0^{2\pi } \nonumber \\&{\left( {A_{66} \frac{\partial \bar{{{\varvec{U}}}}}{\partial \theta }\frac{\partial \bar{{{\varvec{U}}}}^{\mathrm{T}}}{\partial \theta }+\frac{R^{2}A_{11} }{L^{2}}\frac{\partial \bar{{{\varvec{U}}}}}{\partial \xi }\frac{\partial \bar{{{\varvec{U}}}}^{\mathrm{T}}}{\partial \xi }} \right) } \hbox {d}\theta \hbox {d}\xi \end{aligned}$$
(E.2)
$$\begin{aligned} {\varvec{K}}^{uv}= & {} \frac{L}{R}\int _0^1 \int _0^{2\pi }\nonumber \\&\quad {\left( {\frac{2RA_{12} }{L}\frac{\partial \bar{{{\varvec{U}}}}}{\partial \xi }\frac{\partial \bar{{{\varvec{V}}}}^{\mathrm{T}}}{\partial \theta }+\frac{2RA_{66} }{L}\frac{\partial \bar{{{\varvec{U}}}}}{\partial \theta }\frac{\partial \bar{{{\varvec{V}}}}^{\mathrm{T}}}{\partial \xi }} \right) } \hbox {d}\theta \hbox {d}\xi \end{aligned}$$
(E.3)
$$\begin{aligned} {\varvec{K}}^{uw}= & {} \frac{L}{R}\int _0^1 {\int _0^{2\pi } {\left( {\left. {\frac{2RA_{12} }{L}\frac{\partial \bar{{{\varvec{U}}}}}{\partial \xi }\bar{{{\varvec{W}}}}^{T}} \right) } \right. } \hbox {d}\theta \hbox {d}\xi } \end{aligned}$$
(E.4)
$$\begin{aligned} {\varvec{K}}^{vv}= & {} \frac{L}{R}\int _0^1 \int _0^{2\pi } \left\{ \left( {A_{22} +\frac{D_{22} }{R^{2}}} \right) \frac{\partial \bar{{{\varvec{V}}}}}{\partial \theta }\frac{\partial \bar{{{\varvec{V}}}}^{\mathrm{T}}}{\partial \theta }\right. \nonumber \\&\left. +\left( \frac{R^{2}A_{66} }{L^{2}}+\frac{D_{66} }{L^{2}} \right) \frac{\partial \bar{{{\varvec{V}}}}}{\partial \xi }\frac{\partial \bar{{{\varvec{V}}}}^{T}}{\partial \xi } \right\} \hbox {d}\theta \hbox {d}\xi \end{aligned}$$
(E.5)
$$\begin{aligned} {\varvec{K}}^{vw}= & {} \frac{L}{R}\int _0^1 {\int _0^{2\pi }} \nonumber \\&\quad {\left( {2A_{22} \frac{\partial \bar{{{\varvec{V}}}}}{\partial \theta }\bar{{{\varvec{W}}}}^{T}-\frac{2D_{22} }{R^{2}}\frac{\partial \bar{{{\varvec{V}}}}}{\partial \theta }\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{T}}{\partial \theta ^{2}}-\frac{4D_{66} }{L^{2}}\frac{\partial \bar{{{\varvec{V}}}}}{\partial \xi }\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \xi \partial \theta }} \right. } \nonumber \\&\quad -\left. {\frac{2D_{12} }{L^{2}}\frac{\partial \bar{{{\varvec{V}}}}}{\partial \theta }\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \xi ^{2}}} \right) \hbox {d}\theta \hbox {d}\xi \end{aligned}$$
(E.6)
$$\begin{aligned} {\varvec{K}}^{ww}= & {} \frac{L}{R}\int _0^1 \int _0^{2\pi }\nonumber \\&\left( {A_{22} \bar{{{\varvec{W}}}}\bar{{{\varvec{W}}}}^{\mathrm{T}}+\frac{R^{2}D_{11} }{L^{4}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}}{\partial \xi ^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \xi ^{2}}+\frac{D_{22} }{R^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}}{\partial \theta ^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right. \nonumber \\&+\frac{2D_{12} }{L^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}}{\partial \xi ^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \theta ^{2}} \left. {+\frac{4D_{66} }{L^{2}}\frac{\partial ^{2}\bar{{{\varvec{W}}}}}{\partial \xi \partial \theta }\frac{\partial ^{2}\bar{{{\varvec{W}}}}^{\mathrm{T}}}{\partial \xi \partial \theta }} \right) \hbox {d}\theta \hbox {d}\xi \end{aligned}$$
(E.7)

Appendix F: Expressions of the nonlinear section

  1. (1)

    Nonlinear section \(\hbox {U}_{{\varvec{Q}}}\) of laminated composite thin cylindrical shells

    $$\begin{aligned} {U_Q}= \frac{L}{R}\int _0^1 {\int _0^{2\pi } {\left\{ {\left. \begin{array}{l} \frac{{{A_{11}}{R^2}}}{{2{L^3}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{W}}}}}{{\partial \xi }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{U}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{u}}}\\ + \frac{{{A_{12}}}}{{2L}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{W}}}}}{{\partial \theta }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {U^T}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{u}}}\\ +\frac{{2{A_{66}}}}{L}{{\varvec{q}}_{\varvec{u}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{U}}}}}{{\partial \theta }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{2L}}{{\varvec{q}}_{\varvec{u}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{U}}}}}{{\partial \xi }}\frac{{\partial {{\bar{\mathrm{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{11}}{R^2}}}{{2{L^3}}}{{\varvec{q}}_{\varvec{u}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{U}}}}}{{\partial \xi }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{2{A_{12}}R}}{{{L^2}}}{{\varvec{q}}_{\varvec{v}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{V}}}}}{{\partial \theta }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{{A_{12}}R}}{{{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{W}}}}}{{\partial \xi }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{V}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{v}}}\\ + \frac{{{A_{22}}}}{{2R}}{{\varvec{q}}_{\varvec{v}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{V}}}}}{{\partial \theta }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{2{A_{66}}R}}{{{L^2}}}{{\varvec{q}}_{\varvec{v}}}^\mathrm{T}\frac{{\partial \bar{{\varvec{V}}}}}{{\partial \xi }}\frac{{\partial {{\bar{{\varvec{W}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{22}}}}{R}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \theta }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{\varvec{V}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{v}}}\\ + \frac{{{A_{12}}R}}{{2{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\bar{\varvec{W}}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{22}}}}{{2R}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\bar{\varvec{W}}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}R}}{{2{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{W}}^T}}}{{\partial \xi }}{q_w}{{\bar{W}}^T}{q_w}\\ + \frac{{{A_{22}}}}{{2R}}{q_w}^T\frac{{\partial \bar{W}}}{{\partial \theta }}\frac{{\partial {{\bar{W}}^T}}}{{\partial \theta }}{q_w}{{\bar{W}}^T}{q_w}\\ \frac{{{A_{11}}{R^2}}}{{4{L^4}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{22}}}}{{4{R^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \theta }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \theta }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \theta }}\frac{{\partial {{\bar{\varvec{W}}}^T}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \theta }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{66}}}}{{{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{\bar{\varvec{W}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \end{array} \right\} } \right. \mathrm{{d}}\theta \mathrm{{d}}\xi } } \nonumber \\ \end{aligned}$$
    (F.1)
  2. (2)

    Element of nonlinear vector \({\varvec{Q}}'\)

The nonlinear vector \({\varvec{Q}}'\) in Eqs. (17) is expressed as

$$\begin{aligned} {\varvec{Q}}' = \left[ {\begin{array}{l} {{{\varvec{Q}}^u}}\\ {{{\varvec{Q}}^v}}\\ {{{\varvec{Q}}^w}}\\ \end{array}} \right] \end{aligned}$$
(F.2)

where

$$\begin{aligned} {{\varvec{Q}}^u}= & {} \frac{L}{R}\int _0^1 {\int _0^{2\pi } {\left\{ {\left. \begin{array}{l} \frac{{{A_{11}}{R^2}}}{{2{L^3}}}\frac{{\partial {\bar{{\varvec{U}}}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{{A_{11}}{R^2}}}{{2{L^3}}}\frac{{\partial {\bar{{\varvec{U}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{2L}}\frac{{\partial {\bar{{\varvec{U}}}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{2{A_{66}}}}{L}\frac{{\partial {\bar{{\varvec{U}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{2L}}\frac{{\partial {\bar{{\varvec{U}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \end{array} \right\} } \right. {\mathrm{d}}\theta {\mathrm{d}}\xi } } \end{aligned}$$
(F.3)
$$\begin{aligned} {{\varvec{Q}}^v}= & {} \frac{L}{R}\int _0^1 {\int _0^{2\pi } {\left\{ {\left. \begin{array}{l} \frac{{2{A_{12}}R}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{V}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{{A_{12}}R}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{V}}}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{22}}}}{R}\frac{{\partial {\bar{{\varvec{V}}}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \\ + \frac{{{A_{22}}}}{{2R}}\frac{{\partial {\bar{{\varvec{V}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{2{A_{66}}R}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{V}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \end{array} \right\} } \right. \mathrm{{d}}\theta \mathrm{{d}}\xi } } \end{aligned}$$
(F.4)
$$\begin{aligned} {{\varvec{Q}}^w}= & {} \frac{L}{R}\int _0^1 \int _0^{2\pi }\nonumber \\&\times \left\{ \begin{array}{l} \frac{{{A_{12}}R}}{{2{L^2}}}\left( {{\bar{{\varvec{W}}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}+ 2{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}{\bar{{\varvec{W}}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}} \right) \\ + \frac{{{A_{22}}}}{{2R}}\left( {{\bar{{\varvec{W}}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} + 2{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}{\bar{{\varvec{W}}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}} \right) \\ + \frac{{{A_{12}}R}}{{2{L^2}}}\left( {2\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{{{\bar{{\varvec{W}}}}}^\mathrm{T}}{{\varvec{q}}_{\varvec{w}}} + {{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{\bar{{\varvec{W}}}}} \right) \\ + \frac{{{A_{22}}}}{{2R}}\left( 2\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{{\bar{{\varvec{W}}}}}^\mathrm{T}}{{\varvec{q}}_{\varvec{w}}} + {{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {{\varvec{W}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{\bar{{\varvec{W}}}} \right) \\ + \frac{{{A_{11}}{R^2}}}{{2{L^4}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{22}}}}{{2{R^2}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{12}}}}{{4{L^2}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}{{\varvec{q}}_{\varvec{w}}}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}}\\ + \frac{{{A_{66}}}}{{{L^2}}}\left( {\frac{{\partial \bar{\varvec{W}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }} + \frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \theta }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \xi }}} \right) {{\varvec{q}}_{\varvec{w}}}{{\varvec{q}}_{\varvec{w}}}^\mathrm{T}\frac{{\partial {\bar{{\varvec{W}}}}}}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}}}{{\partial \theta }}{{\varvec{q}}_{\varvec{w}}} \end{array} \right\} \mathrm{d}\theta \mathrm{d}\xi \nonumber \\ \end{aligned}$$
(F.5)

Appendix G: Expressions of the spring stiffness matrix

The nonlinear vector \({{\varvec{Q}}}'\) in Eqs. (17) is expressed as

$$\begin{aligned} {{\varvec{K}}_{\mathrm{spr}}} = \left[ {\begin{array}{lll} {{\varvec{K}}_{\mathrm{spr}}^{uu}}&{}&{}\\ &{}{{\varvec{K}}_{\mathrm{spr}}^{vv}}&{}\\ &{}&{}{{\varvec{K}}_{\mathrm{spr}}^{ww}} \end{array}} \right] \end{aligned}$$
(G.1)
  1. (a)

    The spring stiffness matrix \({\varvec{K}}_\mathrm{spr}\) of the arcs-supported boundary condition

    $$\begin{aligned} K_{\mathrm{spr}}^{uu}= & {} \sum \limits _{\mathrm{{s}} = 1}^{\mathrm{NS}} {\int _{{\theta _s}}^{\theta {'_s}} {\left( {k_{u,s}^0{\bar{{\varvec{U}}}}\left( 0 \right) {{{\bar{{\varvec{U}}}}}^\mathrm{T}}\left( 0 \right) + k_{u,s}^1{\bar{{\varvec{U}}}}\left( 1 \right) {{{\bar{{\varvec{U}}}}}^\mathrm{T}}\left( 1 \right) } \right) R} \mathrm{{d}}\theta } \nonumber \\ \end{aligned}$$
    (G.2)
    $$\begin{aligned} K_{\mathrm{spr}}^{vv}= & {} \sum \limits _{s = 1}^{\mathrm{NS}} {\int _{{\theta _s}}^{\theta {'_s}} {\left( {k_{v,s}^0{\bar{{\varvec{V}}}}\left( 0 \right) {{{\bar{{\varvec{V}}}}}^\mathrm{T}}\left( 0 \right) + k_{v,s}^1{\bar{{\varvec{V}}}}\left( 1 \right) {{{\bar{{\varvec{V}}}}}^\mathrm{T}}\left( 1 \right) } \right) R} \mathrm{{d}}\theta } \nonumber \\ \end{aligned}$$
    (G.3)
    $$\begin{aligned} K_{\mathrm{spr}}^{ww}= & {} \sum \limits _{\mathrm{s} = 1}^{\mathrm{NS}} {\int _{{\theta _s}}^{\theta {'_s}} {\left( {k_{w,s}^0{\bar{{\varvec{W}}}}\left( 0 \right) {{{\bar{{\varvec{W}}}}}^\mathrm{T}}\left( 0 \right) + \frac{{k_{\theta ,s}^0}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}\left( 0 \right) }}{{\partial \xi }}\frac{{\partial {{{\bar{{\varvec{W}}}}}^\mathrm{T}}\left( 0 \right) }}{{\partial \xi }}} \right. } } \nonumber \\&+\,k_{w,s}^1{\bar{{\varvec{W}}}}\left( 1 \right) {{{\bar{{\varvec{W}}}}}^\mathrm{T}}\left( 1 \right) \nonumber \\&\left. { +\,\frac{{k_{\theta ,s}^1}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}\left( 1 \right) }}{{\partial \xi }}\frac{{\partial {\bar{{\varvec{W}}}}{{\left( 1 \right) }^\mathrm{T}}}}{{\partial \xi }}} \right) R\mathrm{{d}}\theta \end{aligned}$$
    (G.4)
  2. (b)

    The spring stiffness matrix \({\varvec{K}}_\mathrm{spr}\) of the points-supported boundary condition

    $$\begin{aligned} {K_{\mathrm{spr}}^{uu}}= & {} \sum \limits _{p = 1}^{\mathrm{NA}} \left( {k'^{o}_{\mathrm{u},p}}{\bar{{\varvec{U}}}}\left( {0,{\theta _{p}}} \right) {{{\bar{{\varvec{U}}}}}^\mathrm{T}}\left( {0,{\theta _{p}}} \right) \right. \nonumber \\&\left. +\,{k'^{1}_{u,p}}{\bar{{\varvec{U}}}}\left( {0,{\theta _{p}}} \right) {{{\bar{{\varvec{U}}}}}^\mathrm{T}}\left( {0,{\theta _{p}}} \right) \right) \end{aligned}$$
    (G.5)
    $$\begin{aligned} {K^{vv}_\mathrm{spr}}= & {} \sum \limits _{p = 1}^{\mathrm{NA}} \left( {k'^{0}_{v,p}}{\bar{{\varvec{V}}}}\left( {0,{\theta _p}} \right) {{{\bar{V}}}^\mathrm{T}}\left( {0,{\theta _p}} \right) \right. \nonumber \\&\left. +\, {k'^{1}_{v,p}}{\bar{{\varvec{V}}}}\left( {1,{\theta _p}} \right) {{{\bar{{\varvec{V}}}}}^\mathrm{T}}\left( {1,{\theta _p}} \right) \right) \end{aligned}$$
    (G.6)
    $$\begin{aligned} {K^{ww}_\mathrm{spr}}= & {} \sum \limits _{p = 1}^{\mathrm{NA}} \left( {k'^{0}_{w,p}}{\bar{{\varvec{W}}}}\left( {0,{\theta _p}} \right) {{{\bar{{\varvec{W}}}}}^\mathrm{T}}\left( {0,{\theta _p}} \right) \right. \nonumber \\&\left. +\, \frac{{{k'^{0}_{\theta ,s}}}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}\left( {0,{\theta _p}} \right) }}{{\partial \xi }}\frac{{\partial {\bar{{\varvec{W}}}}{{\left( {0,{\theta _p}} \right) }^\mathrm{T}}}}{{\partial \xi }} \right. \nonumber \\&+\,{k}_{w,p}^{\prime 1}{\bar{{\varvec{W}}}}\left( {1,{\theta _p}} \right) {{{\bar{{\varvec{W}}}}}^\mathrm{T}}\left( {1,{\theta _p}} \right) \nonumber \\&\left. +\,\frac{{{k^\prime {1}_{\theta ,p}}}}{{{L^2}}}\frac{{\partial {\bar{{\varvec{W}}}}\left( {1,{\theta _p}} \right) }}{{\partial \xi }}\frac{{\partial {\bar{{\varvec{W}}}}{{\left( {1,{\theta _p}} \right) }^\mathrm{T}}}}{{\partial \xi }} \right) \nonumber \\ \end{aligned}$$
    (G.7)

Appendix H: Expressions of the damping matrix

Rayleigh damping C is considered during analysis of the vibration response of laminated cylindrical shells, and it is given as follows

$$\begin{aligned} {\varvec{C}} = \alpha {{\varvec{M}}} + \beta \left( {{\varvec{K}}} + {{{\varvec{K}}}_{spr}} \right) \end{aligned}$$
(8)

where\(\alpha , \beta \) are the damping parameters

$$\begin{aligned} \alpha= & {} 2 {\left( {\frac{{{\xi _2}}}{{\omega _2^2}} - \frac{{{\xi _1}}}{{\omega _1^2}}} \right) }\bigg / {\left( {\frac{1}{{\omega _2^2}} - \frac{1}{{\omega _1^2}}} \right) } \beta \nonumber \\= & {} 2{{\left( {{\xi _2}\omega _2^{} - {\xi _1}\omega _1^{}} \right) } {\bigg / } {\left( {\omega _2^2 - \omega _1^2} \right) }} \end{aligned}$$
(9)

where \(\omega _1, \omega _2\) are the first-order and second-order natural frequencies of laminated cylindrical shell, and \(\xi _1,\xi _2\) are the damp coefficient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, P., Zhong, B. et al. Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions. Nonlinear Dyn 95, 1903–1921 (2019). https://doi.org/10.1007/s11071-018-4667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4667-2

Keywords

Navigation