Skip to main content
Log in

Optimal deployment of spin-stabilized tethered formations with continuous thrusters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses issues relevant to thruster-aided deployment of spin-stabilized tethered formations in a circular orbit. The dynamics of the tethered formation are first established by treating the parent satellite as a finite-sized body with respect to its spinning motion. To achieve the minimum-power trajectories for formation deployment, the optimal deployment problem is analytically formulated using Pontryagin’s minimum principle. Physical constraints on tether tension, thrust amplitude, and libration angle are also considered. To handle nonlinearities, the problem is solved numerically using a direct method based on the Gauss pseudospectral approach, in which the optimal deployment profiles are obtained and all of the solutions are proven to be within a feasible range. Finally, based on a variety of simulations, the optimal solution’s sensitivity to certain parameters is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bombardelli, C., Lorenzini, E.C.: Retargeting dynamics of a linear tethered interferometer. J. Guid. Control Dyn. 27(6), 1061–1067 (2004)

    Article  Google Scholar 

  2. Leisawitz, D.: ASA’s Far-IR/submillimeter roadmap missions: SAFIR and SPECS. Adv. Space Res. 34(3), 631–636 (2004)

    Article  Google Scholar 

  3. Qi, R., Misra, A.K.: Dynamics of double-pyramid satellite formations interconnected by tethers and coulomb forces. J. Guid. Control Dyn. 29(6), 1061–1067 (2016)

    Google Scholar 

  4. Alary, D., Andreev, K., et al.: Dynamics of multi-tethered pyramidal satellite formation. Acta Astronaut. 117, 222–230 (2015)

    Article  Google Scholar 

  5. Williams, P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    Article  Google Scholar 

  6. Pang, Z., Jin, D., Yu, B., et al.: Nonlinear normal modes of a tethered satellite system of two degrees of freedom under internal resonances. Nonlinear Dyn. 85(3), 1779–1789 (2016)

    Article  Google Scholar 

  7. Huang, P., Wang, D., Meng, Z., Zhang, F., Guo, J.: Adaptive postcapture backstepping control for tumbling tethered space robot-target combination. J. Guid. Control Dyn. 39(1), 150–156 (2016)

    Article  Google Scholar 

  8. Chen, Y., Huang, R., He, L., et al.: Dynamical modeling and control of space tethers: a review of space tether research. Nonlinear Dyn. 77(4), 1077–1099 (2014)

    Article  Google Scholar 

  9. Tragesser, S.G., Baar, L.G.: Dynamics and control of a tether sling stationed on a rotating body. J. Guid. Control Dyn. 37(1), 176–184 (2014)

    Article  Google Scholar 

  10. Pizarro-Chong, A., Misra, A.K.: Dynamics of multi-tethered satellite formations containing a parent body. Acta Astronaut. 63, 1188–1202 (2008)

    Article  Google Scholar 

  11. Jung, W., Mazzoleni, A.P., Chung, J.: Nonlinear dynamic analysis of a three-body tethered satellite system with deployment/retrieval. Nonlinear Dyn. 82(3), 1127–1144 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wong, B., Misra, A.: Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points. Acta Astronaut. 63, 1178–1187 (2008)

    Article  Google Scholar 

  13. Zhao, J., Cai, Z.: Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits. Acta Astronaut. 63, 673–681 (2008)

    Article  Google Scholar 

  14. Cai, Z., Li, Z., Zhou, H.: Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points. Aerosp. Sci. Technol. 42, 384–391 (2015)

    Article  Google Scholar 

  15. Kim, M., Hall, C.D.: Control of a rotating variable-length tethered system. J. Guid. Control Dyn. 27(5), 849–858 (2004)

    Article  Google Scholar 

  16. Kim, M., Hall, C.D.: Dynamics and control of rotating tethered satellite systems. J. Spacecraft Rockets 44(3), 649–659 (2007)

    Article  Google Scholar 

  17. Decou, A.B.: Orbital dynamics of the hanging tether interferometer. J. Guid. Control Dyn. 14(6), 1309–1311 (1991)

    Article  Google Scholar 

  18. Decou, A.B.: Tether static shape for rotating multi-mass, multi-tether, spacecraft for ‘triangle’ Michelson interferometer. J. Guid. Control Dyn. 12(2), 273–275 (1989)

    Article  Google Scholar 

  19. Misra, A.K., Modi, V.J., Xu, D.M.: Thruster-augmented active control of a tethered sub-satellite system during its retrieval. J. Guid. Control Dyn. 9(6), 663–672 (1986)

    Article  Google Scholar 

  20. Mao, H., Sinn, T., Vasile, M., Tibert, G.: Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment. Acta Astronaut. 1273, 345–358 (2016)

    Article  Google Scholar 

  21. Williams, P.: Optimal control of a spinning double-pyramid earth-pointing tethered formation. Acta Astronaut. 64(11), 1191–1223 (2009)

    Article  Google Scholar 

  22. Tragesser, S.G., Gorjidooz, B.: Open loop spinup and deployment control of a tether sling. J. Spacecraft Rockets 47(2), 345–352 (2010)

    Article  Google Scholar 

  23. Mattias, G., Gunnar, T.: Optimal deployment control of spinning space webs and membranes. J. Guid. Control Dyn. 32(5), 1519–1530 (2009)

    Article  Google Scholar 

  24. Wen, H., Jin, D., Haiyan, H.: Infinite-horizon control for retrieving a tethered subsatellite via an elastic tether. J. Guid. Control Dyn. 32(5), 1519–1530 (2009)

    Article  Google Scholar 

  25. Yu, B.S., Jin, D.P., Wen, H.: Analytical deployment control law for a flexible tethered satellite system. Aerosp. Sci. Technol. 66, 294–303 (2017)

    Article  Google Scholar 

  26. Guang, Z., Fei, S., Jingrui, Z., Bin, L.: Deployment strategies for planar multi-tethered satellite formation. Aerosp. Sci. Technol. 71, 475–484 (2017)

    Article  Google Scholar 

  27. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29(6), 1435–1440 (2006)

    Article  Google Scholar 

  28. Cannataro, B., Rao, A.V., Davis, T.A.: State-defect pairing graph coarsening method for Karush–Kuhn–Tucker matrices arising in orthogonal collocation methods for optimal control. Comput. Optim. Appl. 64(3), 793–819 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11872109). The authors thank the Associate Editor and anonymous reviewers for their many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhai Guang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guang, Z., Xingzi, B. & Bin, L. Optimal deployment of spin-stabilized tethered formations with continuous thrusters. Nonlinear Dyn 95, 2143–2162 (2019). https://doi.org/10.1007/s11071-018-4682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4682-3

Keywords

Navigation