Skip to main content
Log in

Nonlinear vibration of a beam with asymmetric elastic supports

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under the conditions of horizontal placement and only considering geometric nonlinearity, depending on the boundary constraints, primary resonances of an elastic beam exhibit either hardening or softening nonlinear behavior. In this paper, the conversion of softening nonlinear characteristics to hardening characteristics is studied by using the multi-scale perturbation method. Therefore, in a local sense, the condition is established for the resonance of the elastic beam exhibits only linear characteristics by finding the balance between asymmetric elastic support and geometric nonlinearity. A viscoelastic beam supported by vertical springs is proposed with nonrotatable left boundary and freely rotatable right end. In order to truncate the continuous system, natural frequencies and modes of the proposed asymmetric beam are analyzed. The steady-state responses of the beam excited by a distributed harmonic force are, respectively, obtained by an approximate analytical method and a numerical approach. Under the condition that the beam is placed horizontally, the transition from the cantilever state to the clamped–pinned state is demonstrated by constructing different asymmetry support conditions. The resonance peak of the first-order primary resonance is used to demonstrate the transition from softening nonlinear characteristics to the hardening characteristics. This research shows that the transformation from softening characteristics to hardening characteristics caused by asymmetric elastic support and geometric nonlinearity exists only in the first-order mode resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cao, D.X., Zhang, W.: Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos Soliton Fract. 37(3), 858–875 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Zhao, Y.Y., Kang, H.J.: In-plane free vibration analysis of cable–arch structure. J. Sound Vib. 312(3), 363–379 (2008)

    Google Scholar 

  3. Zhang, T., Ouyang, H., Zhang, Y.O., Lv, B.L.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40(17–18), 7880–7900 (2016)

    MathSciNet  Google Scholar 

  4. Ding, H., Zu, J.W.: Steady-state responses of pulley–belt systems with a one-way clutch and belt bending stiffness. J. Vib. Acoust. 136(4), 041006 (2014)

    Google Scholar 

  5. Silva, C.J., Daqaq, M.F.: On estimating the effective nonlinearity of structural modes using approximate modal shapes. J. Vib. Control. 20(11), 1751–1764 (2014)

    MathSciNet  Google Scholar 

  6. Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319, 735–752 (2009)

    Google Scholar 

  7. Arafat, H.N., Nayfeh, A.H., Chin, C.M.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15(1), 31–61 (1998)

    MATH  Google Scholar 

  8. Ding, H., Zhang, G.C., Chen, L.Q., Yang, S.P.: Forced vibrations of supercritically transporting viscoelastic beams. J. Vib. Acoust. 134(5), 051007 (2012)

    Google Scholar 

  9. Ding, H., Dowell, E.H., Chen, L.Q.: Transmissibility of bending vibration of an elastic beam. J. Vib. Acoust. 140(3), 031007 (2018)

    Google Scholar 

  10. Mahmoodi, S.N., Jahli, N., Khadem, S.E.: An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J. Sound Vib. 311(3–5), 1409–1419 (2008)

    Google Scholar 

  11. Pratiher, B., Dwivedy, S.K.: Nonlinear vibrations and frequency response analysis of a cantilever beam under periodically varying magnetic field. Mech. Based Des. Struct. 39(3), 378–391 (2011)

    MATH  Google Scholar 

  12. Pratiher, B., Dwivedy, S.K.: Nonlinear vibration of a magneto-elastic cantilever beam with tip mass. J. Vib. Acoust. 131(2), 021011 (2009)

    Google Scholar 

  13. Aureli, M., Pagano, C., Porfiri, M.: Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids. J. Appl. Phys. 111(12), 124915 (2012)

    Google Scholar 

  14. Pratiher, B.: Vibration control of a transversely excited cantilever beam with tip mass. Arch. Appl. Mech. 82(1), 31–42 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Abdelkefi, A., Yan, Z.M., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart. Mater. Struct. 22(2), 025016 (2013)

    Google Scholar 

  16. Caruntu, D.I., Martinez, I., Knecht, M.W.: Reduced order model analysis of frequency response of alternating current near half natural frequency electrostatically actuated MEMS cantilevers. J. Comput. Nonlinear Dyn. 8(3), 031011 (2012)

    Google Scholar 

  17. Caruntu, D.I., Martinez, I.: Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. Int. J. Nonlinear Mech. 66, 28–32 (2014)

    Google Scholar 

  18. Singh, S.S., Pal, P., Pandey, A.K.: Mass sensitivity of nonuniform microcantilever beams. J. Vib. Acoust. 138(6), 064502 (2016)

    Google Scholar 

  19. Farokhi, H., Ghayesh, M.H., Gholipour, A.: Dynamics of functionally graded micro-cantilevers. Int. J. Eng. Sci. 115, 117–130 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Nayfeh, A.H., Arafat, H.N.: Nonlinear response of cantilever beams to combination and subcombination resonances. Shock Vib. 5(5–6), 277–288 (1998)

    Google Scholar 

  21. Anderson, T.J., Nayfeh, A.H., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118(1), 21–27 (1996)

    Google Scholar 

  22. Yabuno, H., Nayfeh, A.H.: Nonlinear normal modes of a parametrically excited cantilever beam. Nonlinear Dyn. 25(1–3), 65–77 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Silva, C.J., Daqaq, M.F.: Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation. J. Sound Vib. 389, 438–453 (2017)

    Google Scholar 

  24. Azrar, L., Benamar, R., White, R.G.: A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, part ii: multimode approach to the steady state forced periodic response. J. Sound Vib. 255(1), 1–41 (2002)

    Google Scholar 

  25. Wang, Y.Q., Zu, J.W.: Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Appl. Math. Mech. Engl. 38(5), 625–646 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Wielentejczyk, P., Lewandowski, R.: Geometrically nonlinear, steady state vibration of viscoelastic beams. Int. J. Nonlinear Mech. 89, 177–186 (2017)

    Google Scholar 

  27. Mao, X.Y., Ding, H., Chen, L.Q.: Vibration of flexible structures under nonlinear boundary conditions. J. Appl. Mech-T ASME 84(11), 111006 (2017)

    Google Scholar 

  28. Ghayesh, M.H., Kazemirad, S., Darabi, M.A., Woo, P.: Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system. Arch. Appl. Mech. 82(3), 317–331 (2012)

    MATH  Google Scholar 

  29. Mahmoudkhani, S., Haddadpour, H.: Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations. Nonlinear Dyn. 74(1–2), 165–188 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Ding, H., Li, D.P.: Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch. Nonlinear Dyn. 78(2), 1553–1575 (2014)

    MathSciNet  Google Scholar 

  31. Tang, Y.Q., Zhang, D.B., Rui, M., Wang, X., Zhu, D.C.: Dynamic stability of axially accelerating viscoelastic plates with longitudinally varying tensions. Appl. Math. Mech. Engl. 37(12), 1647–1668 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Ding, H., Huang, L.L., Mao, X.Y., Chen, L.Q.: Primary resonance of traveling viscoelastic beam under internal resonance. Appl. Math. Mech. Engl. 38(1), 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Yang, Z.X., Han, Q.K., Chen, Y.G., Jin, Z.H.: Nolinear harmonic response characteristics and experimental investigation of cantilever hard-coating plate. Nonlinear Dyn. 89(1), 27–38 (2017)

    Google Scholar 

  34. Lenci, S., Clementi, F., Rega, G.: A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint. Meccanica 51(11), 2589–2606 (2016)

    MathSciNet  Google Scholar 

  35. Lenci, S., Rega, G.: Axial–transversal coupling in the free nonlinear vibrations of Timoshenko beams with arbitrary slenderness and axial boundary conditions. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2190), 20160057 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X.D., Zhang, W.: Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations. Nonlinear Dyn. 78(4), 2547–2556 (2014)

    MathSciNet  Google Scholar 

  37. Zhang, G.C., Chen, L.Q., Ding, H.: Forced vibration of tip-massed cantilever with nonlinear magnetic interactions. Int. J. Appl. Mech. 6(2), 1450015 (2014)

    Google Scholar 

  38. Ghayesh, M.H., Farokhi, H., Gholipour, A., Hussain, S.: Complex motion characteristics of three-layered Timoshenko microarches. Microsyst. Technol. 23(8), 3731–3744 (2017)

    MATH  Google Scholar 

  39. Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 92(2), 325–349 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China [Grant Numbers 11772181, 11422214], the “Dawn” Program of Shanghai Education Commission (Grant Number 17SG38) and the Innovation Program of Shanghai Municipal Education Commission [Grant Number 2017-01-07-00-09-E00019].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, Y. & Chen, LQ. Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dyn 95, 2543–2554 (2019). https://doi.org/10.1007/s11071-018-4705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4705-0

Keywords

Navigation