Skip to main content

Advertisement

Log in

Neural energy mechanism and neurodynamics of memory transformation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study surveys the interaction between working memory and long-term memory using the neural energy coding method based on a working memory model with \(\hbox {Ca}^{2+}\) subsystem-induced bi-stability. We apply theta-burst stimulation (TBS) and high-frequency stimulation (HFS) to the bi-stable dynamical model to induce long-term memory. During studying the formation of long-term memory, we develop methods to measure the changes in energy input of these two stimuli and the corresponding energy consumption of the memory system. We investigate the minimum energy cost of these two stimuli to induce long-term memory and define an energy ratio to quantitatively describe the energy efficiency of the stimulus. We found that both stimuli induce the similar long-term effects by the dynamical model, but TBS is more energy efficient than HFS. The results provide a more comprehensive understanding in the transformation from working memory, by an energy coding approach, to long-term memory in response to the two types of long-term potentiation-induced protocols, which reflect the physiological mechanisms and neurodynamics of long-term memory generation, and also reveal the energy-efficient principle of the neural system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tu, K., Cooper, D.G., Siegelmann, H.T.: Memory reconsolidation for natural language processing. Cogn. Neurodynamics 3(4), 365–372 (2009)

    Article  Google Scholar 

  2. Naik, B., Nirwane, A., Majumdar, A.: Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cogn. Neurodynamics 11(1), 35–49 (2017)

    Article  Google Scholar 

  3. Fuster, J.M.: Distributed memory for both short and long term. Neurobiol. Learn. Mem. 70(1), 268–274 (1998)

    Article  Google Scholar 

  4. Cantor, J., Engle, R.W.: Working-memory capacity as long-term memory activation: an individual-differences approach. J. Exp. Psychol. Learn. Mem. Cogn. 19(5), 1101–1114 (1993)

    Article  Google Scholar 

  5. Barros, D.M., Pereira, P., Medina, J.H., Izquierdo, I.: Modulation of working memory and of long-but not short-term memory by cholinergic mechanisms in the basolateral amygdala. Behav. Pharmacol. 13(2), 163–167 (2002)

    Article  Google Scholar 

  6. Teng, C., Cheng, Y., et al.: Aging-related changes of EEG synchronization during a visual working memory task. Cogn. Neurodynamics 12(6), 561–568 (2018)

    Article  Google Scholar 

  7. Cowan, N.: Chapter 20 what are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169(1), 323 (2008)

    Article  MathSciNet  Google Scholar 

  8. Daneman, M., Merikle, P.M.: Working memory and language comprehension: a meta-analysis. Psychon. Bull. Rev. 3(4), 422–433 (1996)

    Article  Google Scholar 

  9. Colliaux, D., Molter, C., Yamaguchi, Y.: Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor. Cogn. Neurodynamics 3(2), 141–151 (2009)

    Article  Google Scholar 

  10. Yi, Y., Friedman, D.: Age-related differences in working memory: ERPs reveal age-related delays in selection- and inhibition-related processes. Aging Neuropsychol. Cogn. 21(4), 483–513 (2014)

    Article  Google Scholar 

  11. Zou, Q., Ross, T.J., Gu, H., Geng, X., Zuo, X.N., Hong, L.E., et al.: Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Hum. Brain Mapp. 34(12), 3204–3215 (2013)

    Article  Google Scholar 

  12. Wang, G., Jin, W., Wang, A.: Synchronous firing patterns and transitions in small-world neuronal network. Nonlinear Dyn. 81(3), 1–6 (2015)

    MathSciNet  Google Scholar 

  13. Zhou, J., Wu, Q., Xiang, L.: Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization. Nonlinear Dyn. 69(3), 1393–1403 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, J., Hu, B., Wang, C., Jin, W.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73(1–2), 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  15. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xu, X., Ni, L., Wang, R.: A neural network model of spontaneous up and down transitions. Nonlinear Dyn. 84(3), 1541–1551 (2016)

    Article  MathSciNet  Google Scholar 

  17. Camperi, M., Wang, X.J.: A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5(4), 383–405 (1998)

    Article  MATH  Google Scholar 

  18. Fall, C.P., Rinzel, J.: An intracellular \(\text{ Ca }^{2+}\) subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. J. Comput. Neurosci. 20(1), 97–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S.: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61(2), 331–349 (1989)

    Article  Google Scholar 

  20. Liang, L., Wang, R., Zhang, Z.: The modeling and simulation of visuospatial working memory. Cogn. Neurodynamics 4(4), 359–366 (2010)

    Article  Google Scholar 

  21. Tarnow, E.: Short term memory bowing effect is consistent with presentation rate dependent decay. Cogn. Neurodynamics 4(4), 367–376 (2010)

    Article  Google Scholar 

  22. Ranganath, C., Blumenfeld, R.S.: Doubts about double dissociations between short- and long-term memory. Trends Cognitiveences 9(8), 374–380 (2005)

    Article  Google Scholar 

  23. Cooke, S.F.: Plasticity in the human central nervous system. Brain 129(7), 1659–1673 (2006)

    Article  Google Scholar 

  24. Leleu, T., Aihara, K.: Combined effects of LTP/LTD and synaptic scaling in formation of discrete and line attractors with persistent activity from non-trivial baseline. Cogn. Neurodynamics 6(6), 499–524 (2012)

    Article  Google Scholar 

  25. Clopath, C.: Synaptic consolidation: an approach to long-term learning. Cogn. Neurodynamics 6(3), 251–257 (2012)

    Article  Google Scholar 

  26. Sweet, J.A., Eakin, K.C., Munyon, C.N., Miller, J.P.: Improved learning and memory with theta-burst stimulation of the fornix in rat model of traumatic brain injury. Hippocampus 24(12), 1592–1600 (2014)

    Article  Google Scholar 

  27. Otto, T., Eichenbaum, H., Wible, C.G., Wiener, S.I.: Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus 1(2), 181–192 (2010)

    Article  Google Scholar 

  28. Yun, S.H., Mook-Jung, I., Jung, M.W.: Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex. J. Neurosci. 22(5), 188–192 (2002)

    Article  Google Scholar 

  29. Perez, Y., Chapman, C.A., Woodhall, G., Robitaille, R., Lacaille, J.C.: Differential induction of long-lasting potentiation of inhibitory postsynaptic potentials by theta patterned stimulation versus 100-Hz tetanization in hippocampal pyramidal cells in vitro. Neuroscience 90(3), 747–757 (1999)

    Article  Google Scholar 

  30. Wang, R., Tsuda, I., Zhang, Z.: A new work mechanism on neuronal activity. Int. J. Neural Syst. 25(03), 1450037 (2015)

    Article  Google Scholar 

  31. Wang, R., Zhang, Z., Jiao, X.: Mechanism on brain information processing: energy coding. Appl. Phys. Lett. 89(12), 1102 (2006)

    Google Scholar 

  32. Wang, R., Zhang, Z.: Energy coding in biological neural networks. Cogn. Neurodynamics 1(3), 203–212 (2007)

    Article  Google Scholar 

  33. Wang, R., Zhang, Z., Chen, G.: Energy function and energy evolution on neuronal populations. IEEE Trans. Neural Netw. 19(3), 535–538 (2008)

    Article  Google Scholar 

  34. Wang, Y., Wang, R., Zhu, Y.: Optimal path-finding through mental exploration based on neural energy field gradients. Cogn. Neurodynamics 11(1), 99–111 (2017)

    Article  Google Scholar 

  35. Wang, R., Zhang, Z.: Computation of neuronal energy based on information coding. Chin. J. Theor. Appl. Mech. 44(4), 779–786 (2012)

    Google Scholar 

  36. Wang, Y., Wang, R., Xu, X.: Neural energy supply-consumption properties based on Hodgkin–Huxley model. Neural Plast. 2017(6207141), 1–11 (2017)

    Google Scholar 

  37. Zhu, Y., Wang, R., Wang, Y.: A comparative study of the impact of theta-burst and high-frequency stimulation on memory performance. Front. Hum. Neurosci. 10, 19 (2016)

    MathSciNet  Google Scholar 

  38. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52(1–2), 25–71 (1990)

    Article  Google Scholar 

  39. Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001)

    Article  Google Scholar 

  40. Moujahid, A., D’Anjou, A., Graña, M.: Energy demands of diverse spiking cells from the neocortex, hippocampus, and thalamus. Front. Comput. Neurosci. 8, 41 (2014)

    Article  Google Scholar 

  41. Wang, Y., Xu, X., Wang, R.: An energy model of place cell network in three dimensional space. Front. Neurosci. 12, 264 (2018)

    Article  Google Scholar 

  42. Fall, C., et al.: Cortically restricted production of IP3 leads to propagation of the fertilization \(\text{ Ca }^{2+}\) wave along the cell surface in a model of the Xenopus egg. J. Theor. Biol. 231(4), 487–496 (2004)

    Article  Google Scholar 

  43. Nakao, K., Ikegaya, Y., Yamada, M.K., Nishiyama, N., Matsuki, N.: Fimbrial control of bidirectional synaptic plasticity of medial perforant path-dentate transmission. Synapse 47(3), 163–168 (2003)

    Article  Google Scholar 

  44. Mineeja, K.K., et al.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92(4), 1881–1897 (2018)

    Article  Google Scholar 

  45. Carro-Pérez, C., et al.: Experimental verification of a memristive neural network. Nonlinear Dyn. 93(4), 1823–1840 (2018)

    Article  Google Scholar 

  46. Łepek, M., et al.: Spatial evolution of Hindmarsh–Rose neural network with time delays. Nonlinear Dyn. 92(2), 751–761 (2018)

    Article  Google Scholar 

  47. Song, X., et al.: Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay. Nonlinear Dyn. 94(1), 141–150 (2018)

    Article  Google Scholar 

  48. Ge, J.: Effects of multiple delays on dynamics of a five-neuron network model. Nonlinear Dyn. 94(1), 87–98 (2018)

    Article  MATH  Google Scholar 

  49. Rakshit, S., et al.: Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94(2), 785–805 (2018)

    Article  Google Scholar 

  50. Wang, Y., et al.: Adaptive neural novel prescribed performance control for non-affine pure-feedback systems with input saturation. Nonlinear Dyn. 93(3), 1241–1259 (2018)

    Article  MATH  Google Scholar 

  51. Wang, H., et al.: A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn. Neurodynamics 12(4), 365–376 (2018)

    Article  Google Scholar 

  52. Guo, D., et al.: Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn. Neurodynamics 12(4), 377–383 (2018)

    Article  Google Scholar 

  53. Arslan, F., et al.: The effect of nasal polyposis related nasal obstruction on cognitive functions. Cogn. Neurodynamics 12(4), 385–390 (2018)

    Article  Google Scholar 

  54. Hao, L., et al.: Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression. Cogn. Neurodynamics 12(4), 403–416 (2018)

    Article  Google Scholar 

  55. Youseph, A., et al.: PCA based population generation for genetic network optimization. Cogn. Neurodynamics 12(4), 417–429 (2018)

    Article  Google Scholar 

  56. Rao, A., et al.: An oscillatory neural network model that demonstrates the benefits of multisensory learning. Cogn. Neurodynamics 12(5), 481–499 (2018)

    Article  Google Scholar 

  57. Tozzi, A., et al.: The informational entropy endowed in cortical oscillations. Cogn. Neurodynamics 12(5), 501–507 (2018)

    Article  Google Scholar 

  58. Qin, Y., et al.: Vibrational resonance in a randomly connected neural network. Cogn. Neurodynamics 12(5), 509–518 (2018)

    Article  Google Scholar 

  59. Yamada, M., et al.: An observational learning task using Barnes maze in rats. Cogn. Neurodynamics 12(5), 519–523 (2018)

    Article  Google Scholar 

  60. Myers, M.H., et al.: Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cogn. Neurodynamics 12(2), 211–223 (2018)

    Article  Google Scholar 

  61. Zhu, J., et al.: Measuring spike timing distance in the Hindmarsh–Rose neurons. Cogn. Neurodynamics 12(2), 225–234 (2018)

    Article  Google Scholar 

  62. Jia, B., Gu, H., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodynamics 11(2), 189–200 (2017)

    Article  Google Scholar 

  63. Bernarding, C., Strauss, D.J., et al.: Neurodynamic evaluation of hearing aid features using EEG correlates of listening effort. Cogn. Neurodynamics 11(3), 203–215 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and reviewers for helpful criticisms and comments. This work is supported by the National Natural Science Foundation of China (Nos. 11802095, 11702096, 11232005, 11472104, 11872180) and the Fundamental Research Funds for the Central Universities of China (Nos. 222201814025 & 222201714020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, X., Zhu, Y. et al. Neural energy mechanism and neurodynamics of memory transformation. Nonlinear Dyn 97, 697–714 (2019). https://doi.org/10.1007/s11071-019-05007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05007-4

Keywords

Navigation