Skip to main content
Log in

Substructures’ coupling with nonlinear connecting elements

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The analysis of complex structures is often very challenging since reliable data can only be obtained if the underlying model represents properly the real case. Thus, nonlinearities should be considered if their effect can significantly affect the results. In many cases, the relevant nonlinearity is concentrated on the junction between the components of the system (bolted joints, contacts, etc.). In this work, modal substructuring methods are used to get the behaviour of complex linear systems which are coupled through a nonlinear interface. This can be modelled as an additional substructure to be included in the substructuring process. The dynamic behaviour of the nonlinear connecting substructure is evaluated through the computation of its nonlinear normal modes. The proposed method is applied to lumped parameter systems connected by cubic springs as nonlinear elements. Two scenarios are analysed: the former considering a single nonlinear connection and the latter accounting for multipoint nonlinear connection, being more representative of real cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hurty, W.: Dynamic analysis of structural systems using component modes. AIAA J 3(4), 678–685 (1965)

    Article  Google Scholar 

  2. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J 13(8), 995–1006 (1975)

    Article  Google Scholar 

  3. Craig, R., Bampton, M.: Coupling of substructures for dynamic analysis. AIAA J 6(7), 1313–1319 (1968)

    Article  Google Scholar 

  4. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  5. Kalaycioğlu, T., Özgüven, H. N.: Harmonic response of large engineering structures with nonlinear modifications. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN, 2011, pp. 3623–3629

  6. Kalaycıoğlu, T., Özgüven, H.N.: Nonlinear structural modification and nonlinear coupling. Mech. Syst. Signal Process. 46(2), 289–306 (2014)

    Article  Google Scholar 

  7. D’Ambrogio, W., Sestieri, A.: Using distributed modifications to change the dynamic behavior of structures,# 31, In: Proceedings of the 17th International Modal Analysis Conference, vol. 3727 (1999)

  8. D’Ambrogio, W., Sestieri, A.: Coupling theoretical data and translational FRFs to perform distributed structural modification. Mech. Syst. Signal Process. 15(1), 157–172 (2001)

    Article  Google Scholar 

  9. Vetrone, L., Sestieri, A., D’Ambrogio, W.: Predicting the effect of distributed structural modifications by alternative techniques. In: Proceedings of IMAC-XIX: A Conference on Structural Dynamics: February 5–8, 2001, Hyatt Orlando, Kissimmee, Florida, vol. 1, Society for Experimental Mechanics (2001)

  10. Chong, Y.H., Imregun, M.: Coupling of non-linear substructures using variable modal parameters. Mech. Syst. Signal Process. 14(5), 731–746 (2000)

    Article  Google Scholar 

  11. Kuether, R.J., Allen, M.S.: Nonlinear modal substructuring of systems with geometric nonlinearities. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013)

  12. Falco, M., Mahdiabadi, M.K., Rixen, D.J.: Nonlinear substructuring using fixed interface nonlinear normal modes. In: Dynamics of Coupled Structures, vol. 4, Springer, New York, pp. 205–213 (2017)

    Chapter  Google Scholar 

  13. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29(1), 7–14 (1962)

    Article  MathSciNet  Google Scholar 

  14. Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  15. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes. Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  16. Peeters, M., Kerschen, G., Golinval, J.-C., Stéphan, C., Lubrina, P.: Nonlinear normal modes of a full-scale aircraft. In: Modal Analysis Topics, vol. 3, pp. 223–242. Springer, New York (2011)

    Google Scholar 

  17. Sombroek, C.S.M., Tiso, P., Renson, L., Kerschen, G.: Numerical computation of nonlinear normal modes in a modal derivative subspace. Comput. Struct. 195, 34–46 (2018)

    Article  Google Scholar 

  18. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, New York (2019)

    Book  Google Scholar 

  19. Kuether, R.J., Allen, M.S.: Structural modification of nonlinear FEA subcomponents using nonlinear normal modes. In: Topics in Experimental Dynamic Substructuring, vol. 2, pp. 37–50. Springer, New York (2014)

    Google Scholar 

  20. Hollkamp, J.J., Gordon, R.W.: Reduced-order models for nonlinear response prediction: implicit condensation and expansion. J. Sound Vib. 318(4–5), 1139–1153 (2008)

    Article  Google Scholar 

  21. Castanier, M.P., Tan, Y.-C., Pierre, C.: Characteristic constraint modes for component mode synthesis. AIAA J. 39(6), 1182–1187 (2001)

    Article  Google Scholar 

  22. Kuether, R.J., Allen, M.S., Hollkamp, J.J.: Modal substructuring of geometrically nonlinear finite element models with interface reduction. AIAA J. 55(5), 1695–1706 (2017)

    Article  Google Scholar 

  23. Özgüven, H.N.: Structural modifications using frequency response functions. Mech. Syst. Signal Process. 4(1), 53–63 (1990)

    Article  Google Scholar 

  24. Peeters, M., Kerschen, G., Golinval, J.-C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011)

    Article  Google Scholar 

  25. Krack, M., Panning-von Scheidt, L., Wallaschek, J.: On the computation of the slow dynamics of nonlinear modes of mechanical systems. Mech. Syst. Signal Process. 42(1–2), 71–87 (2014)

    Article  Google Scholar 

  26. D’Ambrogio, W., Fregolent, A.: Decoupling procedures in the general framework of frequency based substructuring. In: Proceedings of 27th IMAC, Orlando (USA)

Download references

Acknowledgements

This research is supported by University of Rome La Sapienza and University of L’Aquila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Fregolent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latini, F., Brunetti, J., D’Ambrogio, W. et al. Substructures’ coupling with nonlinear connecting elements. Nonlinear Dyn 99, 1643–1658 (2020). https://doi.org/10.1007/s11071-019-05381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05381-z

Keywords

Navigation