Skip to main content
Log in

Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inverse stochastic resonance (ISR) is the phenomenon of the response of neuron to noise, which is opposite to the conventional stochastic resonance. In this paper, the ISR phenomena induced by Gaussian and non-Gaussian colored noises are studied in the cases of single Hodgkin–Huxley (HH) neuron and HH neural network, respectively. It is found that the mean firing rate of electrical activities depends on the Gaussian or non-Gaussian colored noises which can induce the phenomenon of ISR. The ISR phenomenon induced by Gaussian colored noise is most obvious under the conditions of low external current, low reciprocal correlation rate and low noise level. The ISR in neural network is more pronounced and lasts longer than the duration of a single neuron. However, the ISR phenomenon induced by non-Gaussian colored noise is apparent under low noise correlation time or low departure from Gaussian noise, and the ISR phenomena show different duration ranges under different parameter values. Furthermore, the transition of mean firing rate is more gradual, the ISR lasts longer, and the ISR phenomenon is more pronounced under the non-Gaussian colored noise. The ISR is a common phenomenon in neurodynamics; our results might provide novel insights into the ISR phenomena observed in biological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yilmaz, E., Baysal, V., Perc, M., Ozer, M.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)

    Google Scholar 

  2. Guo, D.Q., Perc, M., Zhang, Y., Xu, P., Yao, D.: Frequency-difference-dependent stochastic resonance in neural systems. Phys. Rev. E 96, 022415 (2017)

    Google Scholar 

  3. Yu, H., Galán, R.F., Wang, J., Cao, Y.B., Liu, J.: Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise. Phys. A 471, 263–275 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Guo, D.Q., Li, C.G.: Stochastic resonance in Hodgkin–Huxley neuron induced by unreliable synaptic transmission. J. Theor. Biol. 308, 105–114 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Guo, D.Q., Li, C.G.: Stochastic and coherence resonance in feed-forward-loop neuronal network motifs. Phys. Rev. E 79, 051921 (2009)

    Google Scholar 

  6. Kang, Y.M., Chen, X., Lin, X.D.: Mean first passage time and stochastic resonance in a transcriptional regulatory system with non-Gaussian noise. Fluct. Noise Lett. 16, 201–207 (2017)

    Google Scholar 

  7. Yao, M.L., Xu, W., Ning, L.J.: Stochastic resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated noises. Nonlinear Dyn. 67, 329–333 (2012)

    MATH  Google Scholar 

  8. Fauve, S., Heslot, F.: Stochastic resonance in a bistable system. Phys. Lett. A 97, 5–7 (1983)

    Google Scholar 

  9. Guo, D.Q., Perc, M., Liu, T.J., Yao, D.Z.: Functional importance of noise in neuronal information processing. Europhys. Lett. 124, 50001 (2018)

    Google Scholar 

  10. Zhong, S.C., Zhang, L., Wang, H.Q., et al.: Nonlinear effect of time delay on the generalized stochastic resonance in a fractional oscillator with multiplicative polynomial noise. Nonlinear Dyn. 89, 1327–1340 (2017)

    MathSciNet  Google Scholar 

  11. Zhe, S., Micheletto, R.: Noise influence on spike activation in a Hindmarsh–Rose small-world neural network. J. Phys. A 49, 285601 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Kuriscak, E., Marsalek, P., Stroffek, J., et al.: The effect of neural noise on spike time precision in a detailed CA3 neuron model. Comput. Math. Method. M. 2012, 595358 (2012)

    MATH  Google Scholar 

  13. Yao, Y.G., Yang, L.J., Wang, C.J., et al.: Subthreshold periodic signal detection by bounded noise-induced resonance in the FitzHugh–Nagumo neuron. Complexity 2018, 1–10 (2018)

    Google Scholar 

  14. Huh, J.H.: Inverse stochastic resonance in electroconvection by multiplicative colored noise. Phys. Rev. E 94, 052702 (2016)

    MathSciNet  Google Scholar 

  15. Muhammet, U., Ernest, B., Torres, J.J.: Inverse stochastic resonance in networks of spiking neurons. Plos Comput. Biol. 13, e1005646 (2017)

    Google Scholar 

  16. Uzuntarla, M.: Inverse stochastic resonance induced by synaptic background activity with unreliable synapses. Phys. Lett. A 377, 2585–2589 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Bacicl, I., Klinshov, V., Nekorkin, V., Perc, M., Franovic, I.: Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling. EPL 124, 40004 (2018)

    Google Scholar 

  18. Tuckwell, H.C., Jürgen, J.: Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise. Phys. A 391, 5311–5325 (2012)

    Google Scholar 

  19. Uzuntarla, M., Torres, J.J., So, P., Ozer, M., Barreto, E.: Double inverse stochastic resonance with dynamic synapses. Phys. Rev. E 95, 012404 (2017)

    Google Scholar 

  20. Anatoly, B., Sarah, R., Michael, H., Boris, S.G., Arnd, R.: Inverse stochastic resonance in cerebellar Purkinje cells. PLoS Comput. Biol. 12, e1005000 (2016)

    Google Scholar 

  21. Torres, J.J., Uzuntarla, M., Marro, J.: Theory for inverse stochastic resonance in nature. 2018. arXiv:1810.13034

  22. Ge, M.Y., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., et al.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)

    Google Scholar 

  23. Xu, Y., Jia, Y., Ge, M.Y., Lu, L.L., Yang, L.J., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Google Scholar 

  24. Gao, Y., Wang, J.J., Gao, Y., et al.: Oscillation propagation in neural networks with different topologies. Phys. Rev. E 83, 2345–2367 (2011)

    MathSciNet  Google Scholar 

  25. Guo, Y.F., Wei, F., Xi, B., Tan, J.G.: The instability probability density evolution of the bistable system driven by Gaussian colored noise and white noise. Phys. A 503, 200–208 (2018)

    Google Scholar 

  26. Guo, D.Q.: Inhibition of rhythmic spiking by colored noise in neural systems. Cogn. Neurodyn. 5, 293–300 (2011)

    Google Scholar 

  27. Tang, Z., Li, Y.Y., Xi, L., Jia, B., Jia, H.G.: Spiral waves and multiple spatial coherence resonances induced by colored noise in neuronal network. Commun. Theor. Phys. 57, 61–67 (2012)

    MATH  Google Scholar 

  28. Chizhov, A.V., Graham, L.J.: Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Phys. Rev. E 77, 011910 (2008)

    Google Scholar 

  29. Wu, D., Luo, X.Q., Zhu, S.Q.: Stochastic system with coupling between non-Gaussian and Gaussian noise terms. Phys. A 373, 203–214 (2007)

    Google Scholar 

  30. Bezrukov, S.M., Vodyanoy, I.: Stochastic resonance in non-dynamical systems without response thresholds. Nature 385, 319–321 (1997)

    Google Scholar 

  31. Goychuk, I., Hanggi, P.: Stochastic resonance in ion channels characterized by information theory. Phys. Rev. E 61, 4272–4280 (2000)

    Google Scholar 

  32. Guo, Y.F., Xi, B., Wei, F., et al.: Stochastic resonance in FitzHugh–Nagumo neural system driven by correlated non-Gaussian noise and Gaussian noise. Int. J. Mod. Phys. B 31, 1750264 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995)

    Google Scholar 

  34. Yang, Y.C., Li, D.X.: Population system with coupling between non-Gaussian and Gaussian colored noise under Allee effec. Mode. Phys. Lett. B 32, 1850279 (2018)

    Google Scholar 

  35. Li, D.X., Cui, X.W., Yang, Y.C.: Inverse stochastic resonance induced by non-Gaussian colored noise. Neurocomputing 287, 52–57 (2018)

    Google Scholar 

  36. Fuentes, M.A., Wio, H.S., Toral, R.: Effective Markovian approximation for non-Gaussian noises: a path integral approach. Phys. A 303, 91–104 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, H.Q., Xu, H.Q., Xu, Y.: The study on a stochastic system with non-Gaussian noise and Gaussian colored noise. Phys. A 388, 781–788 (2009)

    Google Scholar 

  38. Horacio, S.W., Raul, T.: Effect of non-Gaussian noise sources in a noise-induced transition. Phys. D 193, 161–168 (2004)

    MATH  Google Scholar 

  39. Sun, X.J., Lu, Q.S.: Non-Gaussian colored noise optimized spatial coherence of a Hodgkin–Huxley neuronal network. Chin. Phys. Lett. 31, 020502 (2014)

    Google Scholar 

  40. Majhi, S., Bera, B.K., Banerjee, S., Ghosh, D.: Synchronization of chaotic modulated time delay networks in presence of noise. Eur. Phys. J. Spec. Top. 225, 65–74 (2016)

    Google Scholar 

  41. Ray, A., Chowdhury, A.R., Ghosh, D.: Effect of noise on chaos synchronization in time-delayed systems: numerical and experimental observations. Phys. A 392, 4837–4849 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Sun, X.J., Liu, Z.F., Perc, M.: Effects of coupling strength and network topology on signal detection in small-world neuronal networks. Nonlinear Dyn. 96, 2145–2155 (2019)

    Google Scholar 

  43. Ma, J., Hu, B.L., Wang, C.N., Jin, W.Y.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    MathSciNet  Google Scholar 

  44. Gong, Y.B., Hao, Y.H., Xie, Y.H., et al.: Non-Gaussian noise optimized spiking activity of Hodgkin–Huxley neurons on random complex networks. Biophys Chem. 144, 88–93 (2009)

    Google Scholar 

  45. Gong, Y.B., Xie, Y.H., Hao, Y.H.: Coherence resonance induced by non-Gaussian noise in a deterministic Hodgkin–Huxley neuron. Phys. A 388, 3759–3764 (2009)

    Google Scholar 

  46. Hao, Y.H., Gong, Y.B., Lin, X., et al.: Multiple resonances with time delays in scale-free networks of Hodgkin–Huxley neurons subjected to non-Gaussian noise. Sci. China Chem. 54, 782–787 (2011)

    Google Scholar 

  47. Lu, L.L., Jia, Y., Xu, Y., Ge, M.Y., Yang, L.J., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62, 427–440 (2019)

    Google Scholar 

  48. Yang, L.J., Jia, Y., Yi, M.: The effects of electrical coupling on the temporal coding of neural signal in noisy Hodgkin–Huxley neural network. IEEE ICNC 2, 819–823 (2010)

    Google Scholar 

  49. Liu, S.B., Wu, Y., Li, J.J., et al.: The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks. Nonlinear Dyn. 73, 1055–1063 (2013)

    MathSciNet  Google Scholar 

  50. Ma, J., Lv, M., Zhou, P., Xu, Y., Tasawar, H.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Yue, Y., Liu, L.W., Liu, Y.J., et al.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90, 2893–2902 (2017)

    Google Scholar 

  52. Lu, W.L., Chen, T.P.: Synchronization analysis of linearly coupled networks of discrete time systems. Phys. D 198, 148–168 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Ge, M.Y., Jia, Y., Xu, Y., Lu, L.L., Wang, H.W., Zhao, Y.J.: Wave propagation and synchronization induced by chemical autapse in chain feed-forward Hindmarsh–Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Liu, Z.L., Wu, F.Q., Alzahrani, F., Ma, J.: Control of multi-scroll attractors in a memristor-coupled resonator via time-delayed feedback. Mod. Phys. Lett. B 32, 1850399 (2018)

    MathSciNet  Google Scholar 

  55. Mostaghimi, S., Nazarimehr, F., Jafari, S., et al.: Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Jin, W.Y., Wang, A., Ma, J., Lin, Q.: Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci. China Technol. Sci. 62, 2113–2119 (2019)

    Google Scholar 

  57. Xu, Y.M., Yao, Z., Hobiny, A., Ma, J.: Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inf. Technol. Electron. Eng. 20, 571–583 (2019)

    Google Scholar 

  58. Yu, H.T., Li, K., Guo, X.M., Wang, J., Deng, B., Liu, C.: Firing rate oscillation and stochastic resonance in cortical networks with electrical–chemical synapses and time delay. IEEE 99, 1–1 (2018)

    Google Scholar 

  59. Zhao, Z.G., Gu, H.G.: The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. Chaos 80, 96–108 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, X.H., Liu, S.Q.: Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction. Chin. Phys. B 27, 040501 (2018)

    Google Scholar 

  61. Lu, L.L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M.Y., Pei, Q.M., Yang, L.J.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2019)

    Google Scholar 

  62. Yao, C.G., Ma, J., He, Z.W., Qian, Y., Liu, L.P.: Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network. Phys. A 523, 797–806 (2019)

    MathSciNet  Google Scholar 

  63. Xu, Y., Jia, Y., Wang, H.W., Liu, Y., Wang, P., Zhao, Y.J.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)

    Google Scholar 

  64. Wu, F.Q., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100 (2019)

    Google Scholar 

  66. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Google Scholar 

  67. Bera, B.K., Ghosh, D., Lakshmanan, M.: Chimera states in bursting neurons. Phys. Rev. E 93, 012205 (2016)

    MathSciNet  Google Scholar 

  68. Bera, B.K., Ghosh, D.: Chimera states in purely local delay-coupled oscillators. Phys. Rev. E 93, 052223 (2016)

    MathSciNet  Google Scholar 

  69. Ma, J., Zhang, G., Hayat, H., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Google Scholar 

  70. Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M.Y., Lu, L.L., Pei, Q.M.: Dynamic behaviors in coupled neurons system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, 3012743 (2018)

    Google Scholar 

  71. Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Google Scholar 

  72. Yao, Z., Ma, J., Yao, Y.G., Wang, C.N.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    Google Scholar 

  73. Ma, J., Wu, F.Q., Alsaedi, A., Tang, J.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)

    Google Scholar 

  74. Liu, Y., Ma, J., Xu, Y., Jia, Y.: Electrical mode transition of hybrid neuronal model induced by external stimulus and electromagnetic induction. Int. J. Bifurc. Chaos 29, 1950156 (2019)

    MathSciNet  MATH  Google Scholar 

  75. Ge, M.Y., Jia, Y., Lu, L.L., Xu, Y., Wang, H.W., Zhao, Y.: Propagation characteristics of weak signal in feedforward Izhikevich neural networks. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-019-05392-w

  76. Xu, Y., Ma, J., Zhan, X., Yang, L.J., Jia, Y.: Temperature effect on memristive ion channels. Cogn. Neurodyn. 13, 601–611 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11775091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Jia, Y., Ge, M. et al. Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises. Nonlinear Dyn 100, 877–889 (2020). https://doi.org/10.1007/s11071-020-05492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05492-y

Keywords

Navigation