Skip to main content
Log in

Dynamics of algae blooming: effects of budget allocation and time delay

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Algal blooms are increasing in coastal waters worldwide. The study on the features of algal pollution in water bodies and the ways to eliminate them is of vital importance. Preventing, treating, and monitoring algal blooms can be an unanticipated cost for a water system. To tame algal bloom in a lake, the government provides funds through budget allocation. In this paper, we propose a mathematical model to investigate the effect of budget allocation on the control of algal bloom in a lake. We assume that the growth of budget follows logistic law and also increases in proportion to the algal density in the lake. A part of the budget is utilized for the control of inflow of nutrients, while the remaining is used in the removal of algae from the lake. Our results show that algal bloom can be mitigated from the lake by reducing the inflow rate of nutrients to a very low value, which can be achieved for very high efficacy of budget allocation for the control of nutrients inflow from outside sources. Also, increasing the efficacy of budget allocation for the removal of algae helps to control the algal bloom. Further, more budget should be used on the control of nutrient’s inflow than on the removal of algae, as the presence of nutrients in high concentration will immediately proliferate the growth of algae. Moreover, the combined effects of controlling the inflow of nutrients and removing algae at high rates will result in nutrients and algae-free aquatic environment. Further, we modify the model by considering a discrete time delay involved in the increment of budget due to increased density of algae in the lake. We observe that chaotic oscillations may arise via equilibrium destabilization on increasing the values of time delay. We apply basic tools of nonlinear dynamics such as Poincaré section and maximum Lyapunov exponent to confirm the chaotic behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shukla, J.B., Misra, A.K., Chandra, P.: Modelling and analysis of the algal bloom in a lake caused by discharge of nutrients. Appl. Math. Comput. 196, 782–790 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Misra, A.K.: Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes. Nonlinear Anal. Model. Control 15, 185–198 (2010)

    Article  MathSciNet  Google Scholar 

  3. Wang, L.: Time-varying nonlinear modeling and analysis of algal bloom dynamics. Nonlinear Dyn. 84, 371–378 (2016)

    Article  Google Scholar 

  4. Lund, J.W.G.: Eutrophiocation. Proc. R. Soc. Lond. B 180, 371–382 (1972)

    Article  Google Scholar 

  5. Hasler, A.D.: Eutrophication of lakes by domestic drainage. Ecology 28, 383–395 (1947)

    Article  Google Scholar 

  6. Jorgenson, S.E.: A eutrophication model for a lake. Ecol. Model. 4, 147–165 (1976)

    Article  Google Scholar 

  7. Yang, X.E., et al.: Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 9(3), 197–209 (2008)

    Article  Google Scholar 

  8. Rinaldi, S., et al.: Modeling and Control of River Quality. McGraw-Hill Inc., London (1979)

    Google Scholar 

  9. Shukla, J.B., Misra, A.K., Chandra, P.: Mathematical modeling of the survival of a biological species in polluted water bodies. Differ. Equ. Dyn. Syst. 15(3,4), 209–230 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Rabalais, N.N., et al.: Dynamics and distribution of natural and human-caused coastal hypoxia. Biogeosci. Discuss. 6, 9359–9453 (2009)

    Article  Google Scholar 

  11. Davidson, K., Tett, P., Gowen, R.: Harmful algal blooms. In: Hester, R., Harrison, R. (eds.) Marine Pollution and Human Health, pp. 95–127. The Royal Society of Chemistry, Cambridge (2011)

    Chapter  Google Scholar 

  12. Guo, H.C., Sun, Y.F.: Characteristic analysis and control strategies for the eutrophicated problem of the Lake Dianchi. Prog. Geogr. 21(5), 500–506 (2002)

    Google Scholar 

  13. Mangun, L.B., et al.: Algae control by chlorination at Kansas city, Kansas. J. Am. Water Works Assoc. 21(1), 44–49 (1929)

    Article  Google Scholar 

  14. Ferrier, M.D., et al.: The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresour. Technol. 96, 1788–1795 (2005)

    Article  Google Scholar 

  15. Bitton, G., Fox, J.L., Strickland, H.G.: Removal of algae from Florida lakes by magnetic filtration. Appl. Microbiol. 30(6), 905–908 (1975)

    Article  Google Scholar 

  16. Van Vuuren, L.R.J., Van Duuren, F.A.: Removal of algae from waste water maturation pond effluent. Water Pollut. Control Fed. 37, 1256–1262 (1965)

    Google Scholar 

  17. Misra, A.K., Tiwari, P.K., Venturino, E.: Modeling the impact of awareness on the mitigation of algal bloom in a lake. J. Biol. Phys. 42(1), 147–165 (2016)

    Article  Google Scholar 

  18. Misra, A.K., Tiwari, P.K., Chandra, P.: Modeling the control of algal bloom in a lake by applying some external efforts with time delay. Differ. Equ. Dyn. Syst. (2017). https://doi.org/10.1007/s12591-017-0383-5

    Article  Google Scholar 

  19. Tiwari, P.K., Misra, A.K., Venturino, E.: The role of algae in agriculture: a mathematical study. J. Biol. Phys. 43(2), 297–314 (2017)

    Article  Google Scholar 

  20. Aquatic algae control program. https://fortress.wa.gov/ecy/publications/publications/1210016.pdf

  21. Possible funding sources for managing cyanobacterial harmful algal blooms and cyanotoxins in drinking water. https://www.epa.gov/sites/production/files/2017-01/documents/cyanohabs_funding_fact_sheet.pdf

  22. Hutson, V.: A theorem on average Liapunov functions. Monatsh. Math. 98(4), 267–275 (1984)

    Article  MathSciNet  Google Scholar 

  23. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  Google Scholar 

  24. Voinov, A.A., Tonkikh, A.P.: Qualitative model of eutrophication in macrophyte lakes. Ecol. Model. 35, 211–226 (1987)

    Article  Google Scholar 

  25. Jayaweera, M., Asaeda, T.: Modeling of biomanipulation in shallow, eutrophic lakes: an application to lake Bleiswijkse Zoom, the Netherlands. Ecol. Model. 85, 113–127 (1996)

    Article  Google Scholar 

  26. Tiwari, P.K., et al.: The time delays influence on the dynamical complexity of algal blooms in the presence of bacteria. Ecol. Compl. 39, 100769 (2019)

    Article  Google Scholar 

  27. Song, X., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58(6), 1007–1014 (2015)

    Article  Google Scholar 

  28. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Mathematics and Its Applications, vol. 74. Kluwer Academic Publishers, Dordrecht (1992)

    Book  Google Scholar 

  29. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf-Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  30. Bortz, D.M., Nelson, P.W.: Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics. Bull. Math. Biol. 66, 1009–1026 (2004)

    Article  MathSciNet  Google Scholar 

  31. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  32. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)

    MATH  Google Scholar 

  33. Park, T.: A matlab version of the Lyapunov exponent estimation algorithm of Wolf et al.? physica16d, 1985. https://www.mathworks.com/matlabcentral/fileexchange/48084-lyapunov-exponent-estimation-from-a-time-series-documentation-added

  34. Wolf, A., et al.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  35. Allen, J.C., Schaffer, W.M., Rosko, D.: Chaos reduces species extinctions by amplifying local population noise. Nature 364, 229–232 (1993)

    Article  Google Scholar 

  36. Huisman, J., Weissing, F.: Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–411 (1999)

    Article  Google Scholar 

  37. Li, Y., Muldowney, J.S.: On Bendixson’s criterion. J. Differ. Equ. 106, 27–39 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the associate editor and the reviewers whose comments and suggestions have helped the improvements in this paper.

Funding

Research work of Rajesh Kumar Singh is supported by University Grants Commission, Government of India, New Delhi, in the form of Senior Research Fellowship (No. 20/12/2015(ii)EU-V). Pankaj Kumar Tiwari is thankful to University Grants Commissions, New Delhi, India, for providing financial support in form of D. S. Kothari postdoctoral fellowship (No.F.4-2/2006 (BSR)/MA/17-18/0021). The work of Yun Kang is partially supported by NSF-DMS (1313312 & 1716802); NSF-IOS/DMS (1558127), DARPA (ASC-SIM II), and The James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award (UHC Scholar Award 220020472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Tiwari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A

Components of the equilibrium \(E^*\) are given by

$$\begin{aligned} M^*= & {} \frac{K}{r}(r+\gamma A^*), \end{aligned}$$
(29)
$$\begin{aligned} N^*= & {} \frac{\beta _{12}[\alpha _1qr+K(1-k_1)(\alpha _1+\alpha _2\nu _2)(r+\gamma A^*)]}{(\theta _1\beta _1-\beta _{11}\alpha _1)qr+K(1-k_1)(r+\gamma A^*)\{\theta _1\beta _1-\beta _{11}(\alpha _1+\alpha _2\nu _2)\}}, \end{aligned}$$
(30)

and \(A^*\) is a positive root of \(G(A)=0\), where

$$\begin{aligned} G(A)= & {} \left[ Q+\left( \pi _1-\frac{1}{\theta _1}\right) \alpha _1A\right] -\frac{Q\nu _1k_1K(r+\gamma A)}{pr+k_1K(r+\gamma A)}-\,\frac{\alpha _2\nu _2K(1-k_1)A(r+\gamma A)}{\theta _1[qr+K(1-k_1)(r+\gamma A)]}\nonumber \\&-\,\frac{\beta _{12}\alpha _0[\alpha _1qr+K(1-k_1)(\alpha _1+\alpha _2\nu _2)(r+\gamma A)]}{(\theta _1\beta _1-\beta _{11}\alpha _1)qr+K(1-k_1)(r+\gamma A)\{\theta _1\beta _1-\beta _{11}(\alpha _1+\alpha _2\nu _2)\}}. \end{aligned}$$
(31)

We note the following properties of G:

$$\begin{aligned}&(\mathrm{i})\, G(0)=Q-\frac{Q\nu _1k_1K}{p+k_1K} -\frac{\beta _{12}\alpha _0[\alpha _1q+(\alpha _1+\alpha _2\nu _2)(1-k_1)K]}{[(\theta _1\beta _1-\beta _{11}\alpha _1)q+\{\theta _1\beta _1-\beta _{11}(\alpha _1+\alpha _2\nu _2)\}(1-k_1)K]}, \end{aligned}$$

which is positive provided condition (9) holds.

(ii):

At \(\displaystyle \overline{A}=\frac{Q\theta _1}{\alpha _1(1-\pi _1\theta _1)}>0,\) we have

$$\begin{aligned}&G(\overline{A})=-\frac{Q\nu _1k_1K(r+\gamma \overline{A})}{pr+k_1K(r+\gamma \overline{A})}-\,\frac{\alpha _2\nu _2K(1-k_1)\overline{A}(r+\gamma \overline{A})}{\theta _1[qr+K(1-k_1)(r+\gamma \overline{A})]}\\&-\,\frac{\beta _{12}\alpha _0[\alpha _1qr+K(1-k_1)(\alpha _1+\alpha _2\nu _2)(r+\gamma \overline{A})]}{(\theta _1\beta _1-\beta _{11}\alpha _1)qr+K(1-k_1)\{\theta _1\beta _1-\beta _{11}(\alpha _1+\alpha _2\nu _2)\}(r+\gamma \overline{A})}<0. \end{aligned}$$
(iii):

Also, we have

$$\begin{aligned}&\frac{\mathrm{d}G}{\mathrm{d}A}=-\frac{\alpha _1(1-\pi _1\theta _1)}{\theta _1}-\frac{Q\nu _1k_1Kpr\gamma }{[pr+k_1K(r+\gamma A)]^2}-\,\frac{\alpha _2\nu _2K(1-k_1)[qr(r+2\gamma A)+K(1-k_1)(r+\gamma A)^2]}{\theta _1[qr+K(1-k_1)(r+\gamma A)]^2}\\&-\,\frac{\beta _{12}\alpha _0\theta _1\beta _1\alpha _2\nu _2qrK\gamma (1-k_1)}{[(\theta _1\beta _1-\beta _{11}\alpha _1)qr+K(1-k_1)(r+\gamma A)\{\theta _1\beta _1-\beta _{11}(\alpha _1+\alpha _2\nu _2)\}]^2}<0. \end{aligned}$$

In view of the above three points, Eq. (31) has exactly one positive root (say \(A^*\)) in the interval \((0,\overline{A})\) if condition (9) holds. For this positive value \(A^*\) of A, we get the positive value \(M^*\) of M from Eq. (29). Also, we get the positive value \(N^*\) of N from Eq. (30) provided condition (10) holds.

1.2 Appendix B

Jacobian of system (5) is given by

$$\begin{aligned} J=\left( \begin{array}{ccc} J_{11} &{} J_{12} &{} J_{13}\\ J_{21} &{} J_{22} &{} J_{23}\\ 0 &{} J_{32} &{} J_{33} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} J_{11}= & {} -\left( \alpha _0+\frac{\beta _1\beta _{12}A}{(\beta _{12}+\beta _{11}N)^2}\right) ,\\ J_{12}= & {} \pi _1\alpha _1-\frac{\beta _1N}{\beta _{12}+\beta _{11}N}, \ J_{13}=-\frac{Qp\nu _1k_1}{(p+k_1M)^2}, \\ J_{21}= & {} \frac{\theta _1\beta _1\beta _{12}A}{(\beta _{12}+\beta _{11}N)^2},\\ J_{22}= & {} \frac{\theta _1\beta _1N}{\beta _{12}+\beta _{11}N}-\alpha _1-\frac{\nu _2(1-k_1)M}{q+(1-k_1)M},\\ J_{23}= & {} -\frac{q\nu _2(1-k_1)A}{(q+(1-k_1)M)^2}, \ J_{32}=\gamma M,\\ J_{33}= & {} r\left( 1-\frac{2M}{K}\right) +\gamma A. \end{aligned}$$
  1. 1.

    Evaluating Jacobian J at the equilibrium \(E_0\) gives the eigenvalues

    $$\begin{aligned} -\alpha _0, \ \frac{\theta _1\beta _1Q}{\beta _{12}\alpha _0+\beta _{11}Q}-\alpha _1, \ r. \end{aligned}$$

    Since one eigenvalue is always positive, the equilibrium \(E_0\) is always unstable in M-direction irrespective of the signs of the other two eigenvalues.

  2. 2.

    Evaluation of Jacobian J at the equilibrium \(E_1\) leads to the eigenvalues

    $$\begin{aligned} -\alpha _0, \ \frac{\theta _1\beta _1N_1}{\beta _{12}+\beta _{11}N_1}-\alpha _1-\frac{\nu _2(1-k_1)K}{q+(1-k_1)K}, \ -r. \end{aligned}$$

    Note that the first and third eigenvalues are always negative and the second one is negative provided the opposite of condition (9) holds.

  3. 3.

    Evaluation of Jacobian J at the equilibrium \(E_2\) immediately gives one eigenvalue \(r+\eta A_2\) while other two are given by roots of the following quadratic:

    $$\begin{aligned}&\xi ^2+\xi \left( \alpha _0+\frac{\beta _1\beta _{12}A_2}{(\beta _{12}+\beta _{11}N_2)^2}\right) \nonumber \\&\quad +\,\alpha _1(1-\pi _1\theta _1)\frac{\beta _1\beta _{12}A_2}{(\beta _{12}+\beta _{11}N_2)^2}=0. \end{aligned}$$
    (32)

    Note that the feasibility of equilibrium \(E_2\) implies that the linear and constant terms in the characteristic equation (32) are always positive. Thus, according to Routh–Hurwitz criterion, roots of Eq. (32) are either negative or have negative real parts. Since one eigenvalue is always positive, the equilibrium \(E_2\) is always unstable in M-direction.

  4. 4.

    Evaluation of Jacobian J at the equilibrium \(E^*\) leads to the following characteristic equation:

    $$\begin{aligned} \xi ^3+C_1\xi ^2+C_2\xi +C_3=0, \end{aligned}$$
    (33)

    where

    $$\begin{aligned} C_1= & {} \alpha _0+\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}+\frac{rM^*}{K},\\ C_2= & {} \frac{rM^*}{K}\left( \alpha _0+\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}\right) \\&+\,\frac{q\alpha _2\nu _2\gamma A^*M^*(1-k_1)}{(q+(1-k_1)M^*)^2}\\&+\,\frac{\theta _1\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}\left[ \frac{\beta _1N^*}{\beta _{12}+\beta _{11}N^*}-\pi _1\alpha _1\right] ,\\ C_3= & {} \frac{q\alpha _2\nu _2\gamma A^*M^*(1-k_1)}{(q+(1-k_1)M^*)^2}\left( \alpha _0+\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}\right) \\&+\,\frac{rM^*}{K}\frac{\theta _1\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}\left[ \frac{\beta _1N^*}{\beta _{12}+\beta _{11}N^*}-\pi _1\alpha _1\right] \\&+\,\frac{Qp\nu _1k_1\gamma M^*}{(p+k_1M^*)^2}\frac{\theta _1\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}. \end{aligned}$$

    Clearly, \(C_1>0\) and \(C_2>0\). Employing Routh–Hurwitz criterion, the roots of Eq. (33) are either negative or have negative real parts if and only if the condition (12) is satisfied.

1.3 Appendix C

The second additive compound matrix of Jacobian of the system (5) at equilibrium \(E^*\) is given by

$$\begin{aligned} J^{[2]}=\left( \begin{array}{ccc} a_{11} &{} a_{23} &{} -a_{13} \\ a_{32} &{} \ \ a_{11}+a_{33} &{} a_{12} \\ 0 &{} a_{21} &{} a_{33} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} a_{11}= & {} -\left( \alpha _0+\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}\right) ,\\ a_{12}= & {} \pi _1\alpha _1-\frac{\beta _1N^*}{\beta _{12}+\beta _{11}N^*}, \ a_{13}=-\frac{Qp\nu _1k_1}{(p+k_1M^*)^2}, \\ a_{21}= & {} \frac{\theta _1\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2},\\ a_{23}= & {} -\frac{q\alpha _2\nu _2(1-k_1)A^*}{(q+(1-k_1)M^*)^2}, \ a_{32}=\gamma M^*, \\ a_{33}= & {} -\frac{rM^*}{K}. \end{aligned}$$

Let \(\displaystyle |X|_\infty =\sup _i|X_i|.\) The logarithmic norm \(\nu _\infty (J^{[2]})\) of \(J^{[2]}\) endowed with the vector norm \(|X|_\infty \) is the supremum of \(a_{11}+|a_{23}|+|a_{13}|\), \(|a_{32}|+a_{11}+a_{33}+|a_{12}|\) and \(|a_{21}|+a_{33}\).

Now, \(a_{11}+|a_{23}|+|a_{13}|<0\) if

$$\begin{aligned}&\frac{q\alpha _2\nu _2(1-k_1)A^*}{(q+(1-k_1)M^*)^2}+\frac{Qp\nu _1k_1}{(p+k_1M^*)^2}<\alpha _0\\&\quad +\,\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}=L_1; \end{aligned}$$

similarly \(a_{11}+a_{33}+|a_{32}|+|a_{12}|<0\) if

$$\begin{aligned}&\frac{\beta _1N^*}{\beta _{12}+\beta _{11}N^*}+\gamma M^*<\alpha _0+\frac{rM^*}{K}+\pi _1\alpha _1\\&\quad +\,\frac{\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}=L_2; \end{aligned}$$

also, \(a_{33}+|a_{21}|<0\) if

$$\begin{aligned} \frac{\theta _1\beta _1\beta _{12}A^*}{(\beta _{12}+\beta _{11}N^*)^2}<\frac{rM^*}{K}=L_3. \end{aligned}$$

Following [37], system (5) has no periodic solution around the equilibrium \(E^*\) provided condition (15) is satisfied.

1.4 Appendix D

Jacobian of system (16) is given by

$$\begin{aligned} \overline{J}=\left( \begin{array}{ccc} \overline{J}_{11} &{} \overline{J}_{12} &{} 0 \\ \overline{J}_{21} &{} \overline{J}_{22} &{} \overline{J}_{23} \\ 0 &{} \overline{J}_{32} &{} \overline{J}_{33} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \overline{J}_{11}= & {} -\left( \alpha _0+\frac{\beta _1\beta _{12}A}{(\beta _{12}+\beta _{11}N)^2}\right) ,\\ \overline{J}_{12}= & {} \pi _1\alpha _1-\frac{\beta _1N}{\beta _{12}+\beta _{11}N}, \ \overline{J}_{21}=\frac{\theta _1\beta _1\beta _{12}A}{(\beta _{12}+\beta _{11}N)^2},\\ \overline{J}_{22}= & {} \frac{\theta _1\beta _1N}{\beta _{12}+\beta _{11}N}-\alpha _1-\frac{\nu _2(1-k_1)M}{q+(1-k_1)M},\\ \overline{J}_{23}= & {} -\frac{q\nu _2(1-k_1)A}{(q+(1-k_1)M)^2}, \ \overline{J}_{32}=\gamma M, \\ \overline{J}_{33}= & {} r\left( 1-\frac{2M}{K}\right) +\gamma A. \end{aligned}$$
  1. 1.

    Evaluating the Jacobian \(\overline{J}\) at the equilibrium \(\overline{E}_0\) gives the eigenvalues \(-\alpha _0\), \(-\alpha _1\), and r. Since one eigenvalue is always positive, the equilibrium \(\overline{E}_0\) is always unstable.

  2. 2.

    Evaluation of Jacobian \(\overline{J}\) at the equilibrium \(\overline{E}_1\) leads to the eigenvalues

    $$\begin{aligned} -\alpha _0, \ -\left( \alpha _1+\frac{\nu _2(1-k_1)K}{q+(1-k_1)K}\right) , \ -r. \end{aligned}$$

    Since the eigenvalues are negative, the equilibrium \(\overline{E}_1\) is unconditionally stable.

  3. 3.

    At the equilibrium \(\overline{E}_2\), one eigenvalue of \(\overline{J}\) is immediately obtained as \(r+\gamma \overline{A}_2\), whereas two can be obtain as roots of the equation

    $$\begin{aligned}&\xi ^2+\xi \left( \alpha _0+\frac{\beta _1\beta _{12}\overline{A}_2}{(\beta _{12}+\beta _{11}\overline{A}_2)^2}\right) \nonumber \\&\quad +\,\frac{\theta _1\beta _1\beta _{12}\overline{A}_2}{(\beta _{12}+\beta _{11}\overline{N}_2)^2}\left[ \frac{\beta _1\overline{N}_2}{\beta _{12}+\beta _{11}\overline{N}_2}-\pi _1\alpha _1\right] =0.\nonumber \\ \end{aligned}$$
    (34)

    Since one eigenvalue is positive, the equilibrium is unstable irrespective of the signs of roots of Eq. (34).

  4. 4.

    Evaluation of Jacobian \(\overline{J}\) at the equilibrium \(\overline{E}^*\) leads to the following characteristic equation:

    $$\begin{aligned} \xi ^3+D_1\xi ^2+D_2\xi +D_3=0, \end{aligned}$$
    (35)

    where

    $$\begin{aligned} D_1= & {} \alpha _0+\frac{\beta _1\beta _{12}\overline{A}^*}{(\beta _{12}+\beta _{11}\overline{N}^*)^2}+\frac{r\overline{M}^*}{K},\\ D_2= & {} \frac{r\overline{M}^*}{K}\left( \alpha _0+\frac{\beta _1\beta _{12}\overline{A}^*}{(\beta _{12}+\beta _{11}\overline{N}^*)^2}\right) \\&+\,\frac{q\alpha _2\nu _2\gamma \overline{A}^*\overline{M}^*(1-k_1)}{(q+(1-k_1)\overline{M}^*)^2}\\&+\,\frac{\theta _1\beta _1\beta _{12}\overline{A}^*}{(\beta _{12}+\beta _{11}\overline{N}^*)^2}\left[ \frac{\beta _1\overline{N}^*}{\beta _{12}+\beta _{11}\overline{N}^*}-\pi _1\alpha _1\right] ,\\ D_3= & {} \frac{q\alpha _2\nu _2\gamma \overline{A}^*\overline{M}^*(1-k_1)}{(q+(1-k_1)\overline{M}^*)^2}\left( \alpha _0+\frac{\beta _1\beta _{12}\overline{A}^*}{(\beta _{12}+\beta _{11}\overline{N}^*)^2}\right) \\&+\,\frac{r\overline{M}^*}{K}\frac{\theta _1\beta _1\beta _{12}\overline{A}^*}{(\beta _{12}+\beta _{11}\overline{N}^*)^2} \left[ \frac{\beta _1\overline{N}^*}{\beta _{12}+\beta _{11}\overline{N}^*}-\pi _1\alpha _1\right] . \end{aligned}$$

    Clearly, \(D_1>0\). Hence, according to Routh–Hurwitz criterion, roots of Eq. (35) are either negative or have negative real parts if and only if conditions in (19) are satisfied.

1.5 Appendix E

Differentiating (23) with respect to \(\tau \), we get

$$\begin{aligned} \frac{\mathrm{d}\xi }{\mathrm{d}\tau }=\frac{\xi (q_1\xi +q_0)e^{-\xi \tau }}{[3\xi ^2+2p_2\xi +p_1+q_1e^{-\xi \tau }-(q_1\xi +q_0)\tau e^{-\xi \tau }]}. \end{aligned}$$

This gives

$$\begin{aligned} \left( \frac{\mathrm{d}\xi }{\mathrm{d}\tau }\right) ^{-1}=\frac{3\xi ^2+2p_2\xi +p_1+q_1e^{-\xi \tau }}{\xi (q_1\xi +q_0)e^{-\xi \tau }}-\frac{\tau }{\xi }. \end{aligned}$$

Now,

$$\begin{aligned} {\mathrm{sgn}\left[ \frac{\mathrm{d}(Re(\xi ))}{\mathrm{d}\tau }\right] }_{\tau =\tau ^0_{\pm }}= & {} {\mathrm{sgn}\left[ \frac{\mathrm{d}(Re(\xi ))}{\mathrm{d}\tau }\right] }^{-1}_{\tau =\tau ^0_{\pm }}\\= & {} {\mathrm{sgn}\left[ Re\left( \frac{\mathrm{d}\xi }{\mathrm{d}\tau }\right) ^{-1}\right] }_{\xi =i\omega _{\pm }}\\= & {} {\mathrm{sgn}\left[ \frac{3\omega ^4_{\pm }+2B_2\omega ^2_{\pm }+B_1}{q^2_0+q^2_1\omega ^2_{\pm }}\right] }\\= & {} {\mathrm{sgn}\left[ \frac{\varPsi '(\omega ^2_{\pm })}{q^2_0+q^2_1\omega ^2_{\pm }}\right] }. \end{aligned}$$

Hence, it follows from the hypothesis (\(h_4\)) that \(\varPsi '(\omega ^2_{+})>0\) and \(\varPsi '(\omega ^2_{-})<0\). Thus, the transversality conditions are satisfied.

1.6 Appendix F

Without loss of generality, we denote anyone of the critical values \(\tau =\tau ^k\) (\(k=0,1,2,\cdots \)) by \(\widetilde{\tau }\) at which the characteristic equation (23) corresponding to the delay differential equation (20) has a pair of purely imaginary roots \(\pm i\omega _0\) and the system goes under Hopf bifurcation. Hence, for any root of characteristic equation of the form \(\xi (\tau )=v(\tau )+i\omega (\tau )\), \(v(\widetilde{\tau })=0\), \(\omega (\widetilde{\tau })=\omega _0\) and \(\displaystyle \frac{\mathrm{d}v}{\mathrm{d}\tau }\Big \vert _{\tau =\widetilde{\tau }}\ne 0.\)

We denote \(\tau \) as \(\tau =\widetilde{\tau }+\mu \), \(\mu \in \mathbb {R}\); so that \(\mu =0\) is Hopf bifurcation value for the system. Denote the space of continuous real-valued functions as \(C=C([-1,0],\mathbb {R}^3)\). Using the transformation \(u_1(t)=N(t)-N^*\), \(u_2(t)=A(t)-A^*\), \(u_3(t)=M(t)-M^*\), and \(x_i(t)=u_i(\tau t)\) (\(i=1,2,3\)); the delay system (20) transforms to the following differential equation

$$\begin{aligned} \frac{\mathrm{d}x(t)}{\mathrm{d}t}=L_\mu x_t+F(\mu ,x_t), \end{aligned}$$
(36)

where \(x(t)=(x_1(t),x_2(t),x_3(t))^T\in C\), \(x_t(\varTheta )=x(t+\varTheta )\), \(\varTheta \in [-1,0]\) and \(L_\mu : \ C\rightarrow \mathbb {R}^3\) is given by

$$\begin{aligned} L_\mu \xi =(\widetilde{\tau }+\mu )[R_1\xi (0)+R_2\xi (-1)], \end{aligned}$$
(37)

where \(R_1\) and \(R_2\) are matrices corresponding to linearize delay differential equation (22).

Further, \(\xi : \ [-1,0]\rightarrow \mathbb {R}^3\), \(\xi (t)=(\xi _1(t),\xi _2(t),\xi _3(t))^T\) and

$$\begin{aligned} F(\mu ,\xi )=(\widetilde{\tau }+\mu )\left[ \begin{array}{c} V_1\\ V_2\\ V_3 \end{array}\right] , \ \xi =(\xi _1,\xi _2,\xi _3)^T\in C, \end{aligned}$$

where

$$\begin{aligned} V_1= & {} \sum _{i+j+k\ge 2}\frac{f^{(1)}_{ijk}}{i!j!k!}\xi ^i_1(0)\xi ^j_2(0)\xi ^k_3(0), \\ V_2= & {} \sum _{i+j+k\ge 2}\frac{f^{(2)}_{ijk}}{i!j!k!}\xi ^i_1(0)\xi ^j_2(0)\xi ^k_3(0), \\ V_3= & {} \sum _{i+j+k\ge 2}\frac{f^{(3)}_{ijk}}{i!j!k!}\xi ^i_1(0)\xi ^j_2(-1)\xi ^k_3(0) \end{aligned}$$

with

$$\begin{aligned} f^{(1)}(N,A,M)\equiv & {} Q\left( 1-\frac{\nu _1k_1M}{p+k_1M}\right) -\alpha _0N\\&-\,\frac{\beta _1NA}{\beta _{12}+\beta _{11}N}+\pi _1\alpha _1A,\\ f^{(2)}(N,A,M)\equiv & {} \frac{\theta _1\beta _1NA}{\beta _{12}+\beta _{11}N}-\alpha _1A\\&-\,\alpha _2\frac{\nu _2(1-k_1)AM}{q+(1-k_1)M},\\ f^{(3)}(N,A_1,M)\equiv & {} rM\left( 1-\frac{M}{K}\right) +\gamma A_1M, \end{aligned}$$

where \(A_1=A(t-\tau )\) and

$$\begin{aligned} f^{(1)}_{ijk}= & {} \frac{\partial ^{i+j+k}f^{(1)}}{\partial N^i\partial A^j\partial M^k}\bigg \vert _{E^*}, \ f^{(2)}_{ijk}=\frac{\partial ^{i+j+k}f^{(2)}}{\partial N^i\partial A^j\partial M^k}\bigg \vert _{E^*}, \\ f^{(3)}_{ijk}= & {} \frac{\partial ^{i+j+k}f^{(3)}}{\partial N^i\partial A^j_1\partial M^k}\bigg \vert _{E^*}. \end{aligned}$$

Then, \(L_\mu \) is a continuous linear function mapping \(C([-1,0],\mathbb {R}^3)\) into \(\mathbb {R}^3\).

By the Riesz representation theorem, there exists a matrix (function) \(\eta (\varTheta ,\mu )\) whose components are of bounded variation for \(\varTheta \in [-1,0]\) such that

$$\begin{aligned} L_\mu \xi =\int ^0_{-1}\mathrm{d}\eta (\varTheta ,\mu )\xi (\varTheta ). \end{aligned}$$
(38)

In view of Eq. (37), we can choose

$$\begin{aligned} \eta (\varTheta ,\mu )=(\widetilde{\tau }+\mu )[R_1\delta (\varTheta )-R_2\delta (\varTheta +1)], \end{aligned}$$
(39)

where \(\delta (\varTheta )\) is the Dirac delta function.

For \(\xi \in C^1([-1,0],\mathbb {R}^3)\), we define

$$\begin{aligned} B(\mu )\xi ={\left\{ \begin{array}{ll} {\displaystyle \frac{\mathrm{d}\xi (\varTheta )}{\mathrm{d}\varTheta },} &{} \varTheta \in [-1,0),\\ {\displaystyle \int ^0_{-1}\mathrm{d}\eta (y,\mu )\xi (y)=L_\mu \xi ,} &{} \varTheta =0 \end{array}\right. }\nonumber \\ \end{aligned}$$
(40)

and

$$\begin{aligned} R(\mu )\xi ={\left\{ \begin{array}{ll} 0, &{} \varTheta \in [-1,0)\\ F(\mu ,\xi ), &{} \varTheta =0. \end{array}\right. } \end{aligned}$$
(41)

Then, the system (36) is equivalent to

$$\begin{aligned} \dot{x}_t=B(\mu )x_t+R(\mu )x_t, \end{aligned}$$
(42)

where \(x_t(\varTheta )=x(t+\varTheta )\) for \(\varTheta \in [-1,0]\).

The adjoint operator \(B^*\) of B is defined by

$$\begin{aligned} B^*(\mu )\varphi ={\left\{ \begin{array}{ll} {\displaystyle -\frac{\mathrm{d}\varphi (s)}{\mathrm{d}s},} &{} 0<s\le 1\\ \int ^0_{-1}\varphi (-t)\mathrm{d}\eta (t,0), &{} s=0, \end{array}\right. } \end{aligned}$$
(43)

associated with a bilinear form

$$\begin{aligned} \langle {\varphi ,\xi }\rangle= & {} \overline{\varphi }(0)\cdot \xi (0)\nonumber \\&-\,\int ^0_{\varTheta =-1}\int ^\varTheta _{\nu =0}\overline{\varphi }(\nu -\varTheta )\mathrm{d}\eta (\varTheta )\xi (\nu )\mathrm{d}\nu ,\nonumber \\ \end{aligned}$$
(44)

where \(\eta (\varTheta )=\eta (\varTheta ,0)\). Then, B(0) (from here onward we shall refer B(0) by B) and \(B^*\) are adjoint operators. Since \(\pm i\omega _0\widetilde{\tau }\) are the eigenvalues of B, they are also eigenvalues of \(B^*\). We need to compute eigenvectors of B and \(B^*\) corresponding to \(+i\omega _0\widetilde{\tau }\) and \(-i\omega _0\widetilde{\tau }\), respectively.

Suppose \(q(\varTheta )=(d_1,1,d_2)^Te^{i\omega _0\widetilde{\tau }\varTheta }\) be the eigenvector of B corresponding to eigenvalue \(i\omega _0\widetilde{\tau }\), then

$$\begin{aligned} B(0)q(\varTheta )=i\omega _0\tau q(\varTheta ). \end{aligned}$$
(45)

For \(\varTheta =0\), this gives

$$\begin{aligned} \widetilde{\tau }\left[ \begin{array}{ccc} r_{11} &{} r_{12} &{} r_{13}\\ r_{21} &{} 0 &{} r_{23}\\ 0 &{} r_{32}e^{-i\omega _0\widetilde{\tau }} &{} r_{33} \end{array}\right] \left[ \begin{array}{c} d_1\\ 1\\ d_2 \end{array}\right] =i\omega _0\widetilde{\tau }\left[ \begin{array}{c} d_1\\ 1\\ d_2 \end{array}\right] . \end{aligned}$$
(46)

Solving the system of Eq. (46), we get

$$\begin{aligned} d_1=\frac{r_{12}+r_{13}d_2}{i\omega _0-r_{11}}, \ d_2=\frac{r_{32}e^{-i\omega _0\widetilde{\tau }}}{i\omega _0-r_{33}}. \end{aligned}$$

Similarly, we can calculate \(q^*(y)=D(d^*_1,1,d^*_2)e^{i\omega _0\widetilde{\tau }y}\) such that

$$\begin{aligned} B^*{q^*}^T(y)=-i\omega _0\widetilde{\tau }{q^*}^T(y). \end{aligned}$$
(47)

We get,

$$\begin{aligned} d^*_1=-\frac{r_{21}}{i\omega _0+r_{11}}, \ d^*_2=-\frac{r_{23}+r_{13}d^*_1}{r_{33}+i\omega _0}. \end{aligned}$$

Now, we need to determine the value of D such that \(\langle {q^*(p),q(\varTheta )}\rangle =1\). Using (44), we have

$$\begin{aligned}&\overline{q}^*(0)q(0)-\overline{D}\int ^0_{\varTheta =-1}\int ^\varTheta _{\nu =0}\overline{q}^*(0)e^{-i\omega _0\widetilde{\tau }(\nu -\varTheta )}\\&\quad \mathrm{d}\eta (\varTheta ).q(0)e^{i\omega _0\widetilde{\tau }\nu }\mathrm{d}\nu =1. \end{aligned}$$

After some calculations, we get

$$\begin{aligned} \overline{D}[1+d_1\overline{d}^*_1+d_2\overline{d}^*_2+e^{-i\omega _0\widetilde{\tau }}\widetilde{\tau }r_{32}\overline{d}^*_2]=1. \end{aligned}$$

Thus, D is chosen such that

$$\begin{aligned} \overline{D}=\frac{1}{1+d_1\overline{d}^*_1+d_2\overline{d}^*_2+e^{-i\omega _0\widetilde{\tau }}\widetilde{\tau }r_{32}\overline{d}^*_2}. \end{aligned}$$
(48)

Moreover, we can verify that \(\langle {q^*(p),\overline{q(\varTheta )}}\rangle =0\).

Proceeding as in Hassard et al. [29] and using the same notation, we compute the coordinates to describe the center manifold \(C_0\) at \(\mu =0\). Let \(x_t\) be solution of Eq. (42) when \(\mu =0\). Define,

$$\begin{aligned} z(t)=\langle {q^*,x_t}\rangle , \ W(t,\varTheta )=x_t(\varTheta )-2Re\{z(t)q(\varTheta )\}.\nonumber \\ \end{aligned}$$
(49)

On the center manifold \(C_0\), we have

$$\begin{aligned} W(t,\varTheta )=W(z,\overline{z},\varTheta ), \end{aligned}$$
(50)

where

$$\begin{aligned} W(z,\overline{z},\varTheta )= & {} W_{20}(\varTheta )\frac{z^2}{2}+W_{11}(\varTheta )z\overline{z}\nonumber \\&+\,W_{02}(\varTheta )\frac{\overline{z}^2}{2}+\cdots , \end{aligned}$$
(51)

z and \(\overline{z}\) are local coordinates for center manifold \(C_0\) in the direction of \(q^*\) and \(\overline{q}^*\), respectively. Note that W is real if \(x_t\) is real; we consider only real solutions. Since \(\mu =0\), for solution \(x_t\in C_0\) of Eq. (42), we have

$$\begin{aligned} \dot{z}= & {} i\omega _0\widetilde{\tau }z+\overline{q}^*(0)F(0,W(z,\overline{z},0)+2Re\{zq(0)\})\end{aligned}$$
(52)
$$\begin{aligned}= & {} i\omega _0\widetilde{\tau }z+\overline{q}^*(0)F_0(z,\overline{z}). \end{aligned}$$
(53)

We rewrite this equation as

$$\begin{aligned} \dot{z}=i\omega _0\widetilde{\tau }z+g(z,\overline{z}), \end{aligned}$$
(54)

where

$$\begin{aligned} g(z,\overline{z})= & {} \overline{q}^*(0).F_0(z,\overline{z})=g_{20}\frac{z^2}{2}+g_{11}z\overline{z}+g_{12}\frac{\overline{z}^2}{2}\nonumber \\&+\,g_{21}\frac{z^2\overline{z}}{2}+\cdots . \end{aligned}$$
(55)

From (49) and (51), it follows that

$$\begin{aligned} x_t(\varTheta )= & {} W(z,\overline{z},\varTheta )+2Re\{zq(\varTheta )\}, \end{aligned}$$
(56)
$$\begin{aligned}= & {} W_{20}(\varTheta )\frac{z^2}{2}+W_{11}(\varTheta )z\overline{z}+W_{02}(\varTheta )\frac{\overline{z}^2}{2}\nonumber \\&+\,z(d_1,1,d_2)^Te^{i\omega _0\widetilde{\tau }\varTheta }\nonumber \\&+\,\overline{z}(\overline{d}_1,1,\overline{d}_2)^Te^{-i\omega _0\widetilde{\tau }\varTheta }+\cdots , \end{aligned}$$
(57)

so that

$$\begin{aligned} x_{1t}(\varTheta )= & {} W^{(1)}_{20}(\varTheta )\frac{z^2}{2}+W^{(1)}_{11}(\varTheta )z\overline{z}+W^{(1)}_{02}\frac{\overline{z}^2}{2}\\&+\,d_1ze^{i\omega _0\widetilde{\tau }\varTheta } +\overline{d}_1\overline{z}e^{-i\omega _0\widetilde{\tau }\varTheta }+\cdots ,\\ x_{2t}(\varTheta )= & {} W^{(2)}_{20}(\varTheta )\frac{z^2}{2}+W^{(2)}_{11}(\varTheta )z\overline{z}+W^{(2)}_{02}(\varTheta )\frac{\overline{z}^2}{2}\\&+\,ze^{i\omega _0\widetilde{\tau }\varTheta } +\overline{z}e^{-i\omega _0\widetilde{\tau }\varTheta }+\cdots ,\\ x_{3t}(\varTheta )= & {} W^{(3)}_{20}(\varTheta )\frac{z^2}{2}+W^{(3)}_{11}(\varTheta )z\overline{z}+W^{(3)}_{02}\frac{\overline{z}^2}{2}\\&+\,d_2ze^{i\omega _0\widetilde{\tau }\varTheta } +\overline{d}_2\overline{z}e^{-i\omega _0\widetilde{\tau }\varTheta }+\cdots . \end{aligned}$$

Thus, we have

$$\begin{aligned} x_{1t}(0)= & {} W^{(1)}_{20}(0)\frac{z^2}{2}+W^{(1)}_{11}(0)z\overline{z}+W^{(1)}_{02}(0)\frac{\overline{z}^2}{2}\nonumber \\&+\,d_1z+\overline{d}_1\overline{z}+\cdots ,\nonumber \\ x_{2t}(0)= & {} z+\overline{z}+W^{(2)}_{20}(0)\frac{z^2}{2}+W^{(2)}_{11}(0)z\overline{z}+W^{(2)}_{02}\frac{\overline{z}^2}{2}+\cdots ,\nonumber \\ x_{3t}(0)= & {} d_2z+\overline{d}_2\overline{z}+W^{(3)}_{20}(0)\frac{z^2}{2}+W^{(3)}_{11}(0)z\overline{z}\nonumber \\&+\,W^{(3)}_{02}\frac{\overline{z}^2}{2}+\cdots ,\nonumber \\ x_{2t}(-1)= & {} ze^{-i\omega _0\widetilde{\tau }}+\overline{z}e^{i\omega _0\widetilde{\tau }}+W^{(2)}_{20}(-1)\frac{z^2}{2}\nonumber \\&+\,W^{(2)}_{11}(-1)z\overline{z} +W^{(2)}_{02}(-1)\frac{\overline{z}^2}{2}. \end{aligned}$$
(58)

From the definition of \(F(\mu ,\phi )\), we have

$$\begin{aligned} g(z,\overline{z})= & {} \overline{q}^*(0)\cdot F(0,x_t)=\overline{D}(\overline{d}^*_1,1,\overline{d}^*_2)\cdot \widetilde{\tau }\left[ \begin{array}{c} V_1\\ V_2\\ V_3 \end{array} \right] \nonumber \\= & {} \widetilde{\tau }\overline{D}[\overline{d}^*_1V_1+V_2+\overline{d}^*_2V_3], \end{aligned}$$
(59)

where

$$\begin{aligned} V_1= & {} \sum _{i+j+k\ge 2}\frac{f^{(1)}_{ijk}}{i!j!k!}x^i_{1t}(0)x^j_{2t}(0)x^k_{3t}(0), \\ V_2= & {} \sum _{i+j+k\ge 2}\frac{f^{(2)}_{ijk}}{i!j!k!}x^i_{1t}(0)x^j_{2t}(0)x^k_{3t}(0), \\ V_3= & {} \sum _{i+j+k\ge 2}\frac{f^{(3)}_{ijk}}{i!j!k!}x^i_{1t}(0)x^j_{2t}(-1)x^k_{3t}(0). \end{aligned}$$

Using the expressions for \(x_{1t}(0)\), \(x_{2t}(0)\), and \(x_{3t}(0)\) from (58) in (59) and comparing the coefficients of \(z^2\), \(z\overline{z}\), \(\overline{z}^2\), and \(z^2\overline{z}\) of the resulting expression with those in (55), we get

$$\begin{aligned} g_{20}= & {} 2\widetilde{\tau }\overline{D}\left[ \overline{d}^*_1\left\{ \frac{f^{(1)}_{200}}{2!}d^2_1+f^{(1)}_{110}d_1+\frac{f^{(1)}_{002}}{2!}d^2_2\right\} \right. \\&\quad +\,\left\{ \frac{f^{(2)}_{200}}{2!}d^2_1+f^{(2)}_{110}d_1+f^{(2)}_{011}d_2+\frac{f^{(2)}_{002}}{2!}d^2_2\right\} \\&\quad \left. +\,\overline{d}^*_2\left\{ \gamma d_2e^{-i\omega _0\widetilde{\tau }}-\frac{r}{K}d^2_2\right\} \right] ,\\ g_{11}= & {} \widetilde{\tau }\overline{D}\left[ \overline{d}^*_1\left\{ \frac{f^{(1)}_{200}}{2!}2d_1\overline{d}_1+f^{(1)}_{110}(d_1+\overline{d}_1)\right. \right. \\&\left. \quad +\,\frac{f^{(1)}_{002}}{2!}2d_2\overline{d_2}\right\} \\&\quad +\,\left\{ \frac{f^{(2)}_{200}}{2!}2d_1\overline{d}_1+f^{(2)}_{110}(d_1+\overline{d}_1)\right. \\&\quad \left. +\,f^{(2)}_{011}(d_2+\overline{d}_2)+\frac{f^{(2)}_{002}}{2!}2d_2\overline{d}_2\right\} \\&\quad \left. +\,\overline{d}^*_2\left\{ \gamma (d_2e^{i\omega _0\widetilde{\tau }}+\overline{d}_2e^{-i\omega _0\widetilde{\tau }})-\frac{r}{K}2d_2\overline{d}_2\right\} \right] ,\\ g_{02}= & {} 2\widetilde{\tau }\overline{D}\left[ \overline{d}^*_1\left\{ \frac{f^{(1)}_{200}}{2!}\overline{d}^2_1+f^{(1)}_{110}\overline{d}_1+\frac{f^{(1)}_{002}}{2!}\overline{d}^2_2\right\} \right. \\&\quad +\,\left\{ \frac{f^{(2)}_{200}}{2!}\overline{d}^2_1+f^{(2)}_{110}\overline{d}_1+f^{(2)}_{011}\overline{d}_2+\frac{f^{(2)}_{002}}{2!}\overline{d}^2_2\right\} \\&\quad \left. +\,\overline{d}^*_2\left\{ \gamma \overline{d}_2e^{i\omega _0\widetilde{\tau }}-\frac{r}{K}\overline{d}^2_2\right\} \right] \end{aligned}$$

and

$$\begin{aligned}&g_{21}=2\widetilde{\tau }\overline{D}\left[ \overline{d}^*_1\left\{ \frac{f^{(1)}_{200}}{2!}(2d_1W^{(1)}_{11}(0)+\overline{d}_1W^{(1)}_{20}(0))\right. \right. \\&\quad +\,f^{(1)}_{110}\left( d_1W^{(2)}_{11}(0)+W^{(1)}_{11}(0)+\frac{1}{2}\overline{d}_1W^{(2)}_{20}(0)+\frac{1}{2}W^{(1)}_{20}(0)\right) \\&\quad \left. +\,\frac{f^{(1)}_{002}}{2!}\left( 2d_2W^{(3)}_{11}(0)+\overline{d}_2W^{(3)}_{20}(0)\right) \right\} \\&\quad +\,\left\{ \frac{f^{(2)}_{200}}{2!}\left( 2d_1W^{(1)}_{11}(0)+\overline{d}_1W^{(1)}_{20}(0)\right) \right. \\&\quad +\,f^{(2)}_{110}\left( d_1W^{(2)}_{11}(0)+W^{(1)}_{11}(0)+\frac{1}{2}\overline{d}_1W^{(2)}_{20}(0)+\frac{1}{2}W^{(1)}_{20}(0)\right) \\&\quad +\,f^{(2)}_{011}\left( W^{(3)}_{11}(0)+d_2W^{(2)}_{11}(0)+\frac{1}{2}\overline{d}_2W^{(2)}_{20}(0)+\frac{1}{2}W^{(3)}_{20}(0)\right) \\&\quad \left. +\,\frac{f^{(2)}_{002}}{2!}\left( 2d_2W^{(3)}_{11}(0)+\overline{d}_2W^{(3)}_{20}(0)\right) \right\} \\&\quad +\,\overline{d}^*_2\left\{ \eta \left( W^{(3)}_{11}(0)e^{-i\omega _0\widetilde{\tau }}+d_2W^{(2)}_{11}(-1)+\frac{1}{2}W^{(3)}_{20}(0)e^{i\omega _0\overline{\tau }}\right. \right. \\&\quad \left. \left. +\,\frac{1}{2}\overline{d}_2W^{(2)}_{20}(-1)\right) -\frac{r}{K}\left( 2d_2W^{(3)}_{11}(0)+\overline{d}_2W^{(3)}_{20}(0)\right) \right\} \\&\quad +\,\overline{d}^*_1\left\{ \frac{f^{(1)}_{300}}{3!}3d^2_1\overline{d}_1+\frac{f^{(1)}_{210}}{2!}(d^2_1+2d_1\overline{d}_1)+f^{(1)}_{003}3d^2_2\overline{d}_2\right\} \\&\quad +\,\left\{ \frac{f^{(2)}_{300}}{3!}3d^2_1\overline{d}_1+\frac{f^{(2)}_{210}}{2!}(d^2_1+2d_1\overline{d}_1)\right. \\&\quad \left. \left. +\,\frac{f^{(2)}_{012}}{2!}(d^2_2+2d_2\overline{d}_2)+\frac{f^{(2)}_{003}}{3!}3d^2_2\overline{d}_2\right\} \right] . \end{aligned}$$

In order to compute \(g_{21}\), we need to compute \(W_{20}(\varTheta )\) and \(W_{11}(\varTheta )\). From Eqs. (49) and (52), we have

$$\begin{aligned} \dot{W}= & {} \dot{x}_t-\dot{z}q-\dot{\overline{z}} \overline{q}\nonumber \\= & {} \left\{ \begin{array}{ll} B(0)W-2Re\{\overline{q}^*(0).F_0q(\varTheta )\}, &{} \varTheta \in [-1,0)\\ B(0)W-2Re\{\overline{q}^*(0).F_0q(0)\}+F_0, &{} \varTheta =0 \end{array}\right. \end{aligned}$$
(60)
$$\begin{aligned}\equiv & {} B(0)W+H(z,\overline{z},\varTheta ), \end{aligned}$$
(61)

where

$$\begin{aligned} H(z,\overline{z},\varTheta )=H_{20}(\varTheta )\frac{z^2}{2}+H_{11}(\varTheta )z\overline{z}+H_{02}\frac{\overline{z}^2}{2}+\cdots .\nonumber \\ \end{aligned}$$
(62)

Also, on the center manifold \(C_0\) near the origin,

$$\begin{aligned} \dot{W}=W_z\dot{z}+W_{\overline{z}}\dot{\overline{z}}. \end{aligned}$$
(63)

From Eqs. (54), (61) and (63), it follows that

$$\begin{aligned} (B(0)-2i\omega _0\widetilde{\tau })W_{20}= & {} -H_{20}, \end{aligned}$$
(64)
$$\begin{aligned} B(0)W_{11}= & {} -H_{11}. \end{aligned}$$
(65)

Now, for \(\varTheta \in [-1,0)\), we have

$$\begin{aligned} H(z,\overline{z},\varTheta )= & {} -\overline{q}^*(0).F_0q(\varTheta )-q^*(0).\overline{F}_0\overline{q}(\varTheta )\nonumber \\= & {} -g(z,\overline{z})q(\varTheta )-\overline{g}(z,\overline{z})\overline{q}(\varTheta )\nonumber \\= & {} -(g_{20}q(\varTheta )+\overline{g}_{02}q(\varTheta ))\frac{z^2}{2}\nonumber \\&-\,(g_{11}q(\varTheta )+\overline{g}_{11}\overline{q}(\varTheta ))z\overline{z}+\cdots ,\nonumber \\ \end{aligned}$$
(66)

which on comparing the coefficients with (62) gives

$$\begin{aligned} H_{20}(\varTheta )= & {} -g_{20}q(\varTheta )-\overline{g}_{02}\overline{q}(\varTheta ), \end{aligned}$$
(67)
$$\begin{aligned} H_{11}(\varTheta )= & {} -g_{11}q(\varTheta )-\overline{g}_{11}\overline{q}(\varTheta ). \end{aligned}$$
(68)

From Eqs. (64) and (67), and the definition of B(0), we have

$$\begin{aligned} W'_{20}(\varTheta )=2i\omega _0\widetilde{\tau }W_{20}(\varTheta )+g_{20}q(\varTheta )+\overline{g}_{02}\overline{q}(\varTheta ). \end{aligned}$$
(69)

Note that \(q(\varTheta )=q(0)e^{i\omega _0\widetilde{\tau }\varTheta }\), hence

$$\begin{aligned} W_{20}(\varTheta )=\frac{ig_{20}}{\omega _0\widetilde{\tau }}q(\varTheta )+\frac{i\overline{g}_{02}}{3\omega _0\widetilde{\tau }}\overline{q}(\varTheta )+E_1e^{2i\omega _0\widetilde{\tau }\varTheta }. \end{aligned}$$
(70)

Similarly, from Eqs. (65) and (68), and the definition of B(0), we have

$$\begin{aligned} W'_{11}(\varTheta )= & {} g_{11}q(\varTheta )+\overline{g}_{11}\overline{q}(\varTheta ), \end{aligned}$$
(71)

which gives

$$\begin{aligned} W_{11}(\varTheta )=-\frac{ig_{11}}{\omega _0\widetilde{\tau }}q(\varTheta )+\frac{i\overline{g}_{11}}{\omega _0\widetilde{\tau }}\overline{q}(\varTheta )+E_2, \end{aligned}$$
(72)

where \(E_1=(E^{(1)}_1,E^{(2)}_1,E^{(3)}_1)\) and \(E_2=(E^{(1)}_2,E^{(2)}_2,E^{(3)}_2)\in \mathbb {R}^3\) are constant vectors to be determined. It follows from Eq. (64) and the definition of B(0) that

$$\begin{aligned} \int ^0_{-1}\mathrm{d}\eta (\varTheta )W_{20}(\varTheta )= & {} 2i\omega _0\widetilde{\tau }W_{20}(0)-H_{20}(0), \end{aligned}$$
(73)
$$\begin{aligned} \int ^0_{-1}\mathrm{d}\eta (\varTheta )W_{11}(\varTheta )= & {} -H_{11}(0). \end{aligned}$$
(74)

From Eqs. (60) and (62), we get

$$\begin{aligned} H_{20}= & {} -(g_{20}q(0)+\overline{g}_{02}\overline{q}(0))\nonumber \\&+\,2\widetilde{\tau }\left[ \begin{array}{c} \displaystyle \frac{1}{2}f^{(1)}_{200}d^2_1+f^{(1)}_{110}d_1+\frac{1}{2}f^{(1)}_{002}d^2_2\\ \displaystyle \frac{1}{2}f^{(2)}_{200}d^2_1+f^{(2)}_{110}d_1+f^{(2)}_{011}d_2+\frac{1}{2}f^{(2)}_{002}d^2_2\\ \displaystyle \gamma d_2e^{-i\omega _0\widetilde{\tau }}-\frac{r}{K}d^2_2 \end{array}\right] \nonumber \\ \end{aligned}$$
(75)

and

$$\begin{aligned}&H_{11}(0)=-g_{11}q(0)-\overline{g}_{11}\overline{q}(0)\nonumber \\&\quad +\,2\widetilde{\tau }\left[ \begin{array}{c} \displaystyle \frac{1}{2}f^{(1)}_{200}|d_1|^2+f^{(1)}_{110}Re(d_1)+\frac{1}{2}f^{(1)}_{002}|d_2|^2\\ \displaystyle \frac{1}{2}f^{(2)}_{200}|d_1|^2+f^{(2)}_{110}Re(d_1)+f^{(2)}_{011}Re(d_2)+\frac{1}{2}f^{(2)}_{002}|d_2|^2\\ \displaystyle \gamma (Re(d_2e^{i\omega _0\widetilde{\tau }}))-\frac{r}{K}|d_2|^2 \end{array}\right] .\nonumber \\ \end{aligned}$$
(76)

Using Eqs. (70) and (75) in Eq. (73), and noting that \(q(\varTheta )\) is eigenvector of B(0), we have

$$\begin{aligned}&(2i\omega _0\widetilde{\tau }I-\int ^0_{-1}e^{2i\omega _0\widetilde{\tau }\varTheta }\mathrm{d}\eta (\varTheta ))E_1\nonumber \\&\quad =2\widetilde{\tau }\left[ \begin{array}{c} \displaystyle \frac{1}{2}f^{(1)}_{200}d^2_1+f^{(1)}_{110}d_1+\frac{1}{2}f^{(1)}_{002}d^2_2\\ \displaystyle \frac{1}{2}f^{(2)}_{200}d^2_1+f^{(2)}_{110}d_1+f^{(2)}_{011}d_2+\frac{1}{2}f^{(2)}_{002}d^2_2\\ \displaystyle \gamma d_2e^{-i\omega _0\widetilde{\tau }}-\frac{r}{K}d^2_2, \end{array}\right] \nonumber \\ \end{aligned}$$
(77)

i.e.,

$$\begin{aligned}&\left[ \begin{array}{ccc} 2i\omega _0-r_{11} &{} -r_{12} &{} -r_{13}\\ -r_{21} &{} 2i\omega _0 &{} -r_{23}\\ 0 &{} -r_{32}e^{-2i\omega _0\widetilde{\tau }} &{} \ \ 2i\omega _0-r_{33} \end{array}\right] \left[ \begin{array}{c} E^{(1)}_1\\ E^{(2)}_1\\ E^{(3)}_1\end{array}\right] \nonumber \\&\quad =2\left[ \begin{array}{c } \displaystyle \frac{1}{2}f^{(1)}_{200}d^2_1+f^{(1)}_{110}d_1+\frac{1}{2}f^{(1)}_{002}d^2_2\\ \displaystyle \frac{1}{2}f^{(2)}_{200}d^2_1+f^{(2)}_{110}d_1+f^{(2)}_{011}d_2+\frac{1}{2}f^{(2)}_{002}d^2_2\\ \displaystyle \gamma d_2e^{-i\omega _0\widetilde{\tau }}-\frac{r}{K}d^2_2 \end{array}\right] .\nonumber \\ \end{aligned}$$
(78)

Similarly, using Eqs. (72) and (76) in Eq. (74), we get

$$\begin{aligned}&\left[ \begin{array}{ccc} -r_{11} &{} -r_{12} &{} -r_{13}\\ -r_{21} &{} 0 &{} -r_{23}\\ 0 &{} -r_{32} &{} -r_{33} \end{array}\right] \left[ \begin{array}{c} E^{(1)}_2\\ E^{(2)}_2\\ E^{(3)}_2 \end{array}\right] \nonumber \\&\quad =2\left[ \begin{array}{c} \displaystyle \frac{1}{2}f^{(1)}_{200}|d_1|^2+f^{(1)}_{110}Re(d_1)+\frac{1}{2}f^{(1)}_{002}|d_2|^2\\ \displaystyle \frac{1}{2}f^{(2)}_{200}|d_1|^2+f^{(2)}_{110}Re(d_1)+f^{(2)}_{011}Re(d_2)+\frac{1}{2}f^{(2)}_{002}|d_2|^2\\ \displaystyle \gamma (Re(d_2e^{i\omega _0\widetilde{\tau }}))-\frac{r}{K}|d_2|^2 \end{array}\right] .\nonumber \\ \end{aligned}$$
(79)

Now, we solve systems (78) and (79) for \(E_1\) and \(E_2\), as follows.

Let

$$\begin{aligned} \varDelta _1= & {} \det \left[ \begin{array}{ccc} 2i\omega _0-r_{11} &{} -r_{12} &{} -r_{13}\\ -r_{21} &{} 2i\omega _0 &{} -r_{23}\\ 0 &{} -r_{32}e^{-2i\omega _0\widetilde{\tau }} &{} \ \ 2i\omega _0-r_{33} \end{array} \right] , \\ B_1= & {} \left[ \begin{array}{c} B^{(1)}_1\\ B^{(2)}_1\\ B^{(3)}_1 \end{array}\right] \\= & {} \left[ \begin{array}{c} \frac{1}{2}f^{(1)}_{200}d^2_1+f^{(1)}_{110}d_1+\frac{1}{2}f^{(1)}_{002}d^2_2\\ \frac{1}{2}f^{(2)}_{200}d^2_1+f^{(2)}_{110}d_1+f^{(2)}_{011}d_2+\frac{1}{2}f^{(2)}_{002}d^2_2\\ \gamma d_2e^{-i\omega _0\widetilde{\tau }}-\frac{r}{K}d^2_2 \end{array}\right] ,\\ \varDelta _{11}= & {} 2\det \left[ \begin{array}{ccc} B^{(1)}_1 &{} -r_{12} &{} -r_{13}\\ B^{(2)}_1 &{} 2i\omega _0 &{} -r_{23}\\ B^{(3)}_1 &{} \ \ -r_{32}e^{-2i\omega _0\widetilde{\tau }} &{} \ \ 2i\omega _0-r_{33} \end{array}\right] , \\ \varDelta _{12}= & {} 2\det \left[ \begin{array}{ccc} 2i\omega _0-r_{11} &{} \ \ B^{(1)}_1 &{} -r_{13}\\ -r_{21} &{} B^{(2)}_1 &{} -r_{23}\\ 0 &{} B^{(3)}_1 &{} \ \ 2i\omega _0-r_{33} \end{array}\right] ,\\ \varDelta _{13}= & {} 2\det \left[ \begin{array}{ccc} 2i\omega _0-r_{11} &{} -r_{12} &{} B^{(1)}_1\\ -r_{21} &{} 2i\omega _0 &{} B^{(2)}_1\\ 0 &{} -r_{32}e^{-2i\omega _0\widetilde{\tau }} &{} \ \ B^{(3)}_1 \end{array}\right] , \end{aligned}$$

then

$$\begin{aligned} E^{(1)}_1=\frac{\varDelta _{11}}{\varDelta _1}, \ E^{(2)}_1=\frac{\varDelta _{12}}{\varDelta _1}, \ E^{(3)}_1=\frac{\varDelta _{13}}{\varDelta _1}. \end{aligned}$$

Similarly, let

$$\begin{aligned} \varDelta _2= & {} \det \left[ \begin{array}{ccc} -r_{11} &{} -r_{12} &{} -r_{13}\\ -r_{21} &{} 0 &{} -r_{23}\\ 0 &{} -r_{32} &{} -r_{33} \end{array} \right] , \ B_2=\left[ \begin{array}{c} B^{(1)}_2\\ B^{(2)}_2\\ B^{(3)}_2 \end{array}\right] \\= & {} \left[ \begin{array}{c} \frac{1}{2}f^{(1)}_{200}|d_1|^2+f^{(1)}_{110}Re(d_1)+\frac{1}{2}f^{(1)}_{002}|d_2|^2\\ \frac{1}{2}f^{(2)}_{200}|d_1|^2+f^{(2)}_{110}Re(d_1)+f^{(2)}_{011}Re(d_2)+\frac{1}{2}f^{(2)}_{002}|d_2|^2\\ \gamma (Re(d_2e^{i\omega _0\widetilde{\tau }}))-\frac{r}{K}|d_2|^2 \end{array}\right] ,\\ \varDelta _{21}= & {} 2\det \left[ \begin{array}{ccc} B^{(1)}_2 &{} -r_{12} &{} -r_{13}\\ B^{(2)}_2 &{} 0 &{} -r_{23}\\ B^{(3)}_2 &{} -r_{32} &{} -r_{33} \end{array}\right] , \\ \varDelta _{22}= & {} 2\det \left[ \begin{array}{ccc} -r_{11} &{} B^{(1)}_2 &{} -r_{13}\\ -r_{21} &{} B^{(2)}_2 &{} -r_{23}\\ 0 &{} B^{(3)}_2 &{} -r_{33} \end{array}\right] ,\\ \varDelta _{23}= & {} 2\det \left[ \begin{array}{ccc} -r_{11} &{} -r_{12} &{} B^{(1)}_2\\ -r_{21} &{} 0 &{} B^{(2)}_2\\ 0 &{} -r_{32} &{} B^{(3)}_2 \end{array}\right] , \end{aligned}$$

then

$$\begin{aligned} E^{(1)}_2=\frac{\varDelta _{21}}{\varDelta _2}, \ E^{(2)}_2=\frac{\varDelta _{22}}{\varDelta _2}, \ E^{(3)}_2=\frac{\varDelta _{23}}{\varDelta _2}. \end{aligned}$$

Using these values, we determine \(W_{20}\) and \(W_{11}\) and hence \(g_{21}\). Now, to determine the direction, stability, and period of bifurcating periodic solutions of system (20) at the critical value \(\tau =\widetilde{\tau }\), we compute the following quantities:

$$\begin{aligned} C_1(0)= & {} \frac{i}{2\omega _0\widetilde{\tau }}\left( g_{20}g_{11}-2|g_{11}|^2-\frac{|g_{02}|^2}{3}\right) +\frac{g_{21}}{3}, \end{aligned}$$
(80)
$$\begin{aligned} \mu _2= & {} -\frac{Re\{C_1(0)\}}{Re\{\varPsi '(\widetilde{\tau })\}},\end{aligned}$$
(81)
$$\begin{aligned} \beta _2= & {} 2Re\{C_1(0)\},\end{aligned}$$
(82)
$$\begin{aligned} T_2= & {} -\frac{Im\{C_1(0)\}+\mu _2Im\{\varPsi '(\widetilde{\tau })\}}{\omega _0\widetilde{\tau }}. \end{aligned}$$
(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A.K., Singh, R.K., Tiwari, P.K. et al. Dynamics of algae blooming: effects of budget allocation and time delay. Nonlinear Dyn 100, 1779–1807 (2020). https://doi.org/10.1007/s11071-020-05551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05551-4

Keywords

Navigation