Skip to main content

Advertisement

Log in

Designs, analysis, and applications of nonlinear energy sinks

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear energy sink (NES) is an appropriately designed nonlinear oscillator without positive linear stiffness. NES can suppress vibrations over a wide frequency range due to its targeted energy transfer characteristics. Thus, investigations on NES have attracted a lot of attention since a NES was proposed. Designs, analysis, and applications of NESs are still active since different configurations are needed in various practical circumstances. The present work provides a comprehensive review of state-of-the-art researches on NESs. The work begins with a survey of the generation of a NES and its important vibration control characteristics. The work highlights possible complex dynamics resulting in a NES coupled to a structure. The work also summarizes some significant design on the implements of optimal damping effects and the offsets of NES shortcomings. Then, the work details the applications of NESs in all engineering fields. The concluding remarks suggest further promising directions, such as NESs for multidirectional vibration reduction, NESs with nonlinearities beyond the cubic, potential deterioration caused by a NES, low-cost NESs, NESs for extremely low frequency range, and NESs integrated into active vibration controls. There are 383 references in the review, including some publications of the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gatti, G.: Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica 53, 111–123 (2018). https://doi.org/10.1007/s11012-017-0723-0

    Article  MathSciNet  Google Scholar 

  2. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Phys. B Condens. Matter 296, 222–236 (2001)

    Google Scholar 

  3. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Frequency-energy plots of steady-state solutions for forced and damped systems, and vibration isolation by nonlinear mode localization. Commun. Nonlinear Sci. Numer. Simul. 19, 2905–2917 (2014). https://doi.org/10.1016/j.cnsns.2013.12.018

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang, X., Vakakis, A.F.: Dual mode vibration isolation based on non-linear mode localization. Int. J. Non-Linear Mech. 38, 837–850 (2003). https://doi.org/10.1016/S0020-7462(01)00137-8

    Article  MATH  Google Scholar 

  5. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001). https://doi.org/10.1023/a:1012994430793

    Article  MathSciNet  MATH  Google Scholar 

  6. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001). https://doi.org/10.1023/a:1012967003477

    Article  MATH  Google Scholar 

  7. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. ASME 68, 34–41 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. ASME 68, 42–48 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Vakakis, A.F.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 9, 79–93 (2003). https://doi.org/10.1177/107754603030742

    Article  MATH  Google Scholar 

  10. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 222, 77–134 (2008). https://doi.org/10.1243/14644193jmbd118

    Article  Google Scholar 

  11. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2009)

    MATH  Google Scholar 

  12. Gendelman, O.V.: Targeted energy transfer in systems with external and self-excitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 2007–2043 (2011). https://doi.org/10.1177/0954406211413976

    Article  Google Scholar 

  13. Gendelman, O.V., Vakakis, A.F.: Introduction to a topical issue “nonlinear energy transfer in dynamical and acoustical systems”. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2018). https://doi.org/10.1098/Rsta.2017.0129

    Article  MATH  Google Scholar 

  14. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2018). https://doi.org/10.1098/rsta.2017.0132

    Article  MATH  Google Scholar 

  15. Vorotnikov, K., Kovaleva, M., Starosvetsky, Y.: Emergence of non-stationary regimes in one- and two-dimensional models with internal rotators. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2018). https://doi.org/10.1098/Rsta.2017.0134

    Article  MATH  Google Scholar 

  16. Lu, Z., Wang, Z.X., Zhou, Y., Lu, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  17. Asmis, K.G., Tso, W.K.: Combination and internal resonance in a nonlinear two-degrees-of-freedom system. J. Appl. Mech. 39, 832–834 (1972)

    Google Scholar 

  18. Nayfeh, A.H., Jebril, A.E.S.: The response of two-degree-of-freedom systems with quadratic and cubic non-linearities to multifrequency parametric excitations. J. Sound Vib. 115, 83–101 (1987). https://doi.org/10.1016/0022-460X(87)90493-7

    Article  MATH  Google Scholar 

  19. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Malatkar, P., Nayfeh, A.H.: On the transfer of energy between widely spaced modes in structures. Nonlinear Dyn. 31, 225–242 (2003). https://doi.org/10.1023/a:1022072808880

    Article  MATH  Google Scholar 

  21. Nayfeh, S.A., Nayfeh, A.H.: Energy transfer from high-to low-frequency modes in a flexible structure via modulation. J. Vib. Acoust. 116, 203–207 (1994)

    Google Scholar 

  22. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

    Google Scholar 

  23. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. ASME 123, 324–332 (2001)

    Google Scholar 

  24. Vakakis, A.F.: Designing a linear structure with a local nonlinear attachment for enhanced energy pumping. Meccanica 38, 677–686 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003)

    MATH  Google Scholar 

  26. Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264, 559–577 (2003). https://doi.org/10.1016/S0022-460X(02)01207-5

    Article  Google Scholar 

  27. Gendelman, O., Manevitch, L.I., Vakakis, A.F., Bergman, L.: A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities. Nonlinear Dyn. 33, 1–10 (2003). https://doi.org/10.1023/A:1025515112708

    Article  MathSciNet  MATH  Google Scholar 

  28. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40, 891–899 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.11.001

    Article  MATH  Google Scholar 

  29. Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294, 651–662 (2006). https://doi.org/10.1016/j.jsv.2005.11.031

    Article  Google Scholar 

  30. Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299, 822–838 (2007). https://doi.org/10.1016/j.jsv.2006.07.029

    Article  Google Scholar 

  31. Musienko, A.I., Lamarque, C.H., Manevitch, L.I.: Design of mechanical energy pumping devices. J. Vib. Control 12, 355–371 (2006). https://doi.org/10.1177/1077546306062098

    Article  MATH  Google Scholar 

  32. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007). https://doi.org/10.1007/s11071-006-9066-4

    Article  MATH  Google Scholar 

  33. Vakakis, A.F., Bergman, L.A.: Rebuttal of “steady state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator” by P. Malatkar and A.H. Nayfeh. Nonlinear Dyn. 53, 167–168 (2008). https://doi.org/10.1007/s11071-007-9304-4

    Article  MATH  Google Scholar 

  34. Malatkar, P., Nayfeh, A.H.: Authors’ response to the rebuttal by A.F. Vakakis and L.A. Bergman of Steady state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator, Vol. 47, 2007, pp. 167-179. Nonlinear Dyn. 53, 169–171 (2008). https://doi.org/10.1007/s11071-007-9305-3

    Article  MATH  Google Scholar 

  35. Dantas, M.J.H., Balthazar, J.M.: On energy transfer between linear and nonlinear oscillators. J. Sound Vib. 315, 1047–1070 (2008). https://doi.org/10.1016/j.jsv.2008.02.033

    Article  Google Scholar 

  36. Costa, S.N.J., Hassmann, C.H.G., Balthazar, J.M., Dantas, M.J.H.: On energy transfer between vibrating systems under linear and nonlinear interactions. Nonlinear Dyn. 57, 57–67 (2009). https://doi.org/10.1007/s11071-008-9419-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Samani, F.S., Pellicano, F., Masoumi, A.: Performances of dynamic vibration absorbers for beams subjected to moving loads. Nonlinear Dyn. 73, 1065–1079 (2013). https://doi.org/10.1007/s11071-013-0853-4

    Article  Google Scholar 

  38. Vakakis, A.F., Manevitch, L.I., Musienko, A.I., Kerschen, G., Bergman, L.A.: Transient dynamics of a dispersive elastic wave guide weakly coupled to an essentially nonlinear end attachment. Wave Motion 41, 109–132 (2005). https://doi.org/10.1016/j.wavemoti.2004.06.002

    Article  MathSciNet  MATH  Google Scholar 

  39. Vakakis, A.F., Rand, R.H.: Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities. Int. J. Non-Linear Mech. 39, 1079–1091 (2004). https://doi.org/10.1016/S0020-7462(03)00098-2

    Article  MATH  Google Scholar 

  40. Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D Nonlinear Phenom. 204, 41–69 (2005). https://doi.org/10.1016/j.physd.2005.03.014

    Article  MathSciNet  MATH  Google Scholar 

  41. Manevitch, L.I., Musienko, A.I., Lamarque, C.H.: New analytical approach to energy pumping problem in strongly nonhomogeneous 2dof systems. Meccanica 42, 77–83 (2007). https://doi.org/10.1007/s11012-006-9021-y

    Article  MathSciNet  MATH  Google Scholar 

  42. Gendelman, O.V., Gorlov, D.V., Manevitch, L.I., Musienko, A.I.: Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses. J. Sound Vib. 286, 1–19 (2005). https://doi.org/10.1016/j.jsv.2004.09.021

    Article  Google Scholar 

  43. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66, 648–679 (2005). https://doi.org/10.1137/040613706

    Article  MathSciNet  MATH  Google Scholar 

  44. McFarland, D.M., Kerschen, G., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J. Acoust. Soc. Am. 118, 791–799 (2005). https://doi.org/10.1121/1.1944649

    Article  Google Scholar 

  45. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018). https://doi.org/10.1016/j.jsv.2018.08.058

    Article  Google Scholar 

  46. Zang, J., Zhang, Y.W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019). https://doi.org/10.1007/s11071-019-05233-w

    Article  Google Scholar 

  47. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019). https://doi.org/10.1016/j.ymssp.2018.08.026

    Article  Google Scholar 

  48. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). https://doi.org/10.1016/j.jsv.2019.03.014

    Article  Google Scholar 

  49. Chen, H.Y., Mao, X.Y., Ding, H., Chen, L.Q.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Process. 135, 106383 (2020). https://doi.org/10.1016/j.ymssp.2019.106383

    Article  Google Scholar 

  50. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019). https://doi.org/10.1016/j.ymssp.2019.04.047

    Article  Google Scholar 

  51. Zhang, Z., Zhang, Y.-W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05606-6

    Article  Google Scholar 

  52. Gourdon, E., Lamarque, C.H.: Nonlinear energy sink with uncertain parameters. J. Comput. Nonlinear Dyn. 1, 187–195 (2006)

    Google Scholar 

  53. Gendelman, O.V., Starosvetsky, Y.: Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing. J. Appl. Mech. ASME 74, 325–331 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Panagopoulos, P.N., Gendelman, O., Vakakis, A.F.: Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn. 47, 377–387 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007). https://doi.org/10.1007/s11071-006-9073-5

    Article  MathSciNet  MATH  Google Scholar 

  56. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    MATH  Google Scholar 

  57. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2008)

    MATH  Google Scholar 

  58. Zang, J., Chen, L.Q.: Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mech. Sin. 33, 801–822 (2017). https://doi.org/10.1007/s10409-017-0671-x

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, K., Zhang, Y.-W., Ding, H., Chen, L.-Q.: The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions. Commun. Nonlinear Sci. Numer. Simul. 44, 1–526 (2017). https://doi.org/10.1016/j.cnsns.2016.08.008

    Article  MathSciNet  Google Scholar 

  60. Dekemele, K., De Keyser, R., Loccufier, M.: Performance measures for targeted energy transfer and resonance capture cascading in nonlinear energy sinks. Nonlinear Dyn. 93, 259–284 (2018). https://doi.org/10.1007/s11071-018-4190-5

    Article  Google Scholar 

  61. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004). https://doi.org/10.1023/b:nody.0000042911.49430.25

    Article  MathSciNet  MATH  Google Scholar 

  62. Gendelman, O.V.: Degenerate bifurcation scenarios in the dynamics of coupled oscillators with symmetric nonlinearities. Int. J. Bifurc. Chaos 16, 169–178 (2006). https://doi.org/10.1142/S021812740601468x

    Article  MathSciNet  MATH  Google Scholar 

  63. Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: part I. J. Sound Vib. 311, 1228–1248 (2008)

    Google Scholar 

  64. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746–765 (2008)

    Google Scholar 

  65. Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Impulsive periodic and quasi-periodic orbits of coupled oscillators with essential stiffness nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 13, 959–978 (2008). https://doi.org/10.1016/j.cnsns.2006.08.001

    Article  MathSciNet  MATH  Google Scholar 

  66. Starosvetsky, Y., Gendelman, O.V.: Interaction of nonlinear energy sink with a two degrees of freedom linear system: internal resonance. J. Sound Vib. 329, 1836–1852 (2010)

    Google Scholar 

  67. Vakakis, A.F.: Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn. 61, 443–463 (2010). https://doi.org/10.1007/s11071-010-9661-2

    Article  MathSciNet  MATH  Google Scholar 

  68. Savadkoohi, A.T., Manevitch, L.I., Lamarque, C.H.: Analysis of the transient behavior in a two dof nonlinear system. Chaos Solitons Fractals 44, 450–463 (2011). https://doi.org/10.1016/j.chaos.2011.03.007

    Article  MathSciNet  MATH  Google Scholar 

  69. Andersen, D., Starosvetsky, Y., Mane, M., Hubbard, S., Remick, K., Wang, X.Y., Vakakis, A., Bergman, L.: Non-resonant damped transitions resembling continuous resonance scattering in coupled oscillators with essential nonlinearities. Phys. D Nonlinear Phenom. 241, 964–975 (2012). https://doi.org/10.1016/j.physd.2012.02.009

    Article  MATH  Google Scholar 

  70. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70, 2049–2061 (2012). https://doi.org/10.1007/s11071-012-0597-6

    Article  MathSciNet  Google Scholar 

  71. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. ASME 134, 11016 (2012). https://doi.org/10.1115/1.4005005

    Article  Google Scholar 

  72. Savadkoohi, A.T., Lamarque, C.H., Dimitrijevic, Z.: Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn. 70, 1473–1483 (2012). https://doi.org/10.1007/s11071-012-0548-2

    Article  MathSciNet  Google Scholar 

  73. Chen, L.Q., Li, X., Lu, Z.Q., Zhang, Y.W., Ding, H.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019). https://doi.org/10.1016/j.jsv.2019.03.005

    Article  Google Scholar 

  74. Charlemagne, S., Savadkoohi, A.T., Lamarque, C.H.: Interactions between two coupled nonlinear forced systems: fast/slow dynamics. Int. J. Bifurc. Chaos 26, 1650155 (2016). https://doi.org/10.1142/S0218127416501558

    Article  MathSciNet  MATH  Google Scholar 

  75. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87, 1453–1466 (2017)

    Google Scholar 

  76. Chouvion, B.: A wave approach to show the existence of detached resonant curves in the frequency response of a beam with an attached nonlinear energy sink. Mech. Res. Commun. 95, 16–22 (2019). https://doi.org/10.1016/j.mechrescom.2018.11.006

    Article  Google Scholar 

  77. Zang, J., Zhang, Y.W., Ding, H., Yang, T.Z., Chen, L.Q.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Process. 125, 99–122 (2019). https://doi.org/10.1016/j.ymssp.2018.05.061

    Article  Google Scholar 

  78. Bitar, D., Ture Savadkoohi, A., Lamarque, C.-H., Gourdon, E., Collet, M.: Extended complexification method to study nonlinear passive control. Nonlinear Dyn. 99, 1433–1450 (2019). https://doi.org/10.1007/s11071-019-05365-z

    Article  Google Scholar 

  79. Radu, A.: Stochastic reduced-order models for stable nonlinear ordinary differential equations. Nonlinear Dyn. 97, 225–245 (2019). https://doi.org/10.1007/s11071-019-04967-x

    Article  MATH  Google Scholar 

  80. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear normal modes, resonances and energy exchange in single-walled carbon nanotubes. Int. J. Non-Linear. Mech. 120, 103398 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103398

    Article  Google Scholar 

  81. Bergeot, B., Bellizzi, S.: Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks. Mech. Syst. Signal Process. 131, 728–750 (2019). https://doi.org/10.1016/j.ymssp.2019.05.045

    Article  Google Scholar 

  82. Lund, A., Dyke, S.J., Song, W., Bilionis, I.: Identification of an experimental nonlinear energy sink device using the unscented Kalman filter. Mech. Syst. Signal Process. 136, 106512 (2020). https://doi.org/10.1016/j.ymssp.2019.106512

    Article  Google Scholar 

  83. Bitar, D., Ture Savadkoohi, A., Lamarque, C.-H., Gourdon, E., Collet, M.: Extended complexification method to study nonlinear passive control. Nonlinear Dyn. 99, 1433–1450 (2020). https://doi.org/10.1007/s11071-019-05365-z

    Article  Google Scholar 

  84. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007)

    Google Scholar 

  85. Gourdon, E., Lamarque, C.H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50, 793–808 (2007)

    MATH  Google Scholar 

  86. Qiu, D.H., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140, 11404 (2018). https://doi.org/10.1115/1.4038304

    Article  Google Scholar 

  87. Qiu, D.H., Seguy, S., Paredes, M.: A novel design of cubic stiffness for a Nonlinear Energy Sink (NES) based on conical spring. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Advances on Mechanics, Design Engineering and Manufacturing, pp. 565–573. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45781-9_57

    Chapter  Google Scholar 

  88. Qiu, D.H., Paredes, M., Seguy, S.: Variable pitch spring for nonlinear energy sink: application to passive vibration control. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci 233, 611–622 (2019). https://doi.org/10.1177/0954406218761485

    Article  Google Scholar 

  89. Zhang, Y.W., Xu, K.F., Zang, J., Ni, Z.Y., Zhu, Y.P., Chen, L.Q.: Dynamic design of a nonlinear energy sink with NiTiNOL-Steel wire ropes based on nonlinear output frequency response functions. Appl. Math. Mech. Ed. 40, 1791–1804 (2019). https://doi.org/10.1007/s10483-019-2548-9

    Article  Google Scholar 

  90. Luo, J., Wierschem, N.E., Fahnestock, L.A., Bergman, L.A., Spencer, B.F., AL-Shudeifat, M., McFarland, D.M., Quinn, D.D., Vakakis, A.F.: Realization of a strongly nonlinear vibration-mitigation device using elastomeric bumpers. J. Eng. Mech. 140, 4014009 (2014). https://doi.org/10.1061/(Asce)Em.1943-7889.0000692

    Article  Google Scholar 

  91. Wierschem, N.E., Luo, J., Al-Shudeifat, M., Hubbard, S., Ott, R., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A., Bergman, L.A.: Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink. J. Struct. Eng. 140, 4014027 (2014)

    Google Scholar 

  92. Georgiadis Vakakis, A.F., Mcfarland, D.M., Bergman, L.F.: Shock isolation through passive energy pumping caused by nonsmooth nonlinearities. Int. J. Bifurc. Chaos 15, 1989–2001 (2005)

    Google Scholar 

  93. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007). https://doi.org/10.1007/s11071-006-9189-7

    Article  MATH  Google Scholar 

  94. Lamarque, C.H., Savadkoohi, A.T., Etcheverria, E., Dimitrijevic, Z.: Multi-scale dynamics of two coupled nonsmooth systems. Int. J. Bifurc. Chaos 22, 1250295 (2012). https://doi.org/10.1142/S0218127412502951

    Article  MathSciNet  MATH  Google Scholar 

  95. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D Nonlinear Phenom. 238, 1868–1896 (2009). https://doi.org/10.1016/j.physd.2009.06.013

    Article  MATH  Google Scholar 

  96. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Google Scholar 

  97. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015). https://doi.org/10.1016/j.jsv.2015.08.020

    Article  Google Scholar 

  98. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. ASME 137, 31008 (2015)

    Google Scholar 

  99. Pennisi, G., Stephan, C., Gourc, E., Michon, G.: Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dyn. 88, 1769–1784 (2017). https://doi.org/10.1007/s11071-017-3344-1

    Article  Google Scholar 

  100. Li, T., Lamarque, C.H., Seguy, S., Berlioz, A.: Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink. Nonlinear Dyn. 91, 2319–2330 (2018). https://doi.org/10.1007/s11071-017-4015-y

    Article  Google Scholar 

  101. Lu, Z., Wang, Z.X., Masri, S.F., Lu, X.L.: Particle impact dampers: past, present, and future. Struct. Control Heal. Monit. 25, e2058 (2018). https://doi.org/10.1002/Stc.2058

    Article  Google Scholar 

  102. Farid, M., Gendelman, O.V., Babitsky, V.I.: Dynamics of a hybrid vibro-impact nonlinear energy sink. Zamm Z. Angew. Math. Und Mech. (2019). https://doi.org/10.1002/zamm.201800341

    Article  Google Scholar 

  103. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. ASME 138, 31010 (2016)

    Google Scholar 

  104. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008). https://doi.org/10.1016/j.jsv.2007.12.024

    Article  Google Scholar 

  105. Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175–200 (2011)

    MATH  Google Scholar 

  106. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Google Scholar 

  107. Wang, D., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Mitigating the effect of impact loading on a vehicle using an essentially nonlinear absorber. Veh. Syst. Dyn. 47, 1183–1204 (2009). https://doi.org/10.1080/00423110802531083

    Article  Google Scholar 

  108. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.004

    Article  Google Scholar 

  109. Li, W.K., Wierschem, N.E., Li, X.H., Yang, T.J.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018). https://doi.org/10.1016/j.jsv.2018.08.057

    Article  Google Scholar 

  110. Al-Shudeifat, M.A.: Piecewise nonlinear energy sink. In: Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 2015, vol 8. (2016)

  111. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Wavelet-bounded empirical mode decomposition for vibro-impact analysis. Nonlinear Dyn. 93, 1559–1577 (2018). https://doi.org/10.1007/s11071-018-4276-0

    Article  Google Scholar 

  112. Wei, Y.M., Dong, X.J., Guo, P.F., Feng, Z.K., Zhang, W.M.: Enhanced targeted energy transfer by vibro impact cubic nonlinear energy sink. Int. J. Appl. Mech. 10, 1850061 (2018). https://doi.org/10.1142/S1758825118500618

    Article  Google Scholar 

  113. Yao, H.L., Cao, Y.B., Zhang, S.J., Wen, B.C.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94, 2265–2275 (2018). https://doi.org/10.1007/s11071-018-4488-3

    Article  Google Scholar 

  114. Wei, Y.M., Wei, S., Zhang, Q.L., Dong, X.J., Peng, Z.K., Zhang, W.M.: Targeted energy transfer of a parallel nonlinear energy sink. Appl. Math. Mech. Ed. 40, 621–630 (2019). https://doi.org/10.1007/s10483-019-2477-6

    Article  MathSciNet  Google Scholar 

  115. Zhong, R., Chen, J., Ge, W., Liu, J., Wang, X.: Research on higher branch response of series nonlinear energy sink. J. Dyn. Control 17, 251–257 (2019). https://doi.org/10.6052/1672-6553-2018-070

    Article  Google Scholar 

  116. Chen, J.E., Sun, M., Hu, W.H., Zhang, J.H., Wei, Z.C.: Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05528-3

    Article  Google Scholar 

  117. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Targeted energy transfer between a model flexible wing and nonlinear energy sink. J. Aircr. 47, 1918–1931 (2010)

    Google Scholar 

  118. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. ASME 79, 11012 (2012)

    Google Scholar 

  119. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012)

    MathSciNet  Google Scholar 

  120. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling. Chaos 22(1), 013118 (2012). https://doi.org/10.1063/1.3683480

    Article  MathSciNet  MATH  Google Scholar 

  121. Farid, M., Gendelman, O.V.: Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control 23, 373–388 (2017)

    MathSciNet  Google Scholar 

  122. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non-Linear. Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  123. Al-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52, 763–779 (2017)

    Google Scholar 

  124. Yao, H.L., Zheng, D.S., Wen, B.C.: Magnetic nonlinear energy sink for vibration attenuation of unbalanced rotor system. Shock Vib. 2017, 4132607 (2017). https://doi.org/10.1155/2017/4132607

    Article  Google Scholar 

  125. Yao, H.L., Cao, Y.B., Ding, Z.Y., Wen, B.C.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019). https://doi.org/10.1016/j.ymssp.2019.01.054

    Article  Google Scholar 

  126. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F., Cantwell, W.J.: Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch. Appl. Mech. 90, 495–521 (2020). https://doi.org/10.1007/s00419-019-01622-0

    Article  Google Scholar 

  127. Mao, X.Y., Ding, H., Chen, L.Q.: Nonlinear torsional vibration absorber for flexible structures. J. Appl. Mech. ASME 86, 21006 (2019). https://doi.org/10.1115/1.4042045

    Article  Google Scholar 

  128. Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012). https://doi.org/10.1007/s11071-011-0028-0

    Article  MathSciNet  Google Scholar 

  129. Kong, X.R., Li, H.Q., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91, 733–754 (2018). https://doi.org/10.1007/s11071-017-3906-2

    Article  Google Scholar 

  130. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96, 1819–1845 (2019). https://doi.org/10.1007/s11071-019-04886-x

    Article  Google Scholar 

  131. Ahmadabadi, Z.N., Khadem, S.E.: Annihilation of high-amplitude periodic responses of a forced two degrees-of-freedom oscillatory system using nonlinear energy sink. J. Vib. Control 19, 2401–2412 (2013)

    MathSciNet  Google Scholar 

  132. Silva, T.M.P., Clementino, M.A., Erturk, A., De Marqui, C.: Equivalent electrical circuit framework for nonlinear and high quality factor piezoelectric structures. Mechatronics 54, 133–143 (2018). https://doi.org/10.1016/j.mechatronics.2018.07.009

    Article  Google Scholar 

  133. Silva, T.M.P., Clementino, M.A., De Marqui, C., Erturk, A.: An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. J. Sound Vib. 437, 68–78 (2018). https://doi.org/10.1016/j.jsv.2018.08.038

    Article  Google Scholar 

  134. Raze, G., Kerschen, G.: Multimodal vibration damping of nonlinear structures using multiple nonlinear absorbers. Int. J. Non-Linear Mech. 119, 103308 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103308

    Article  Google Scholar 

  135. Benarous, N., Gendelman, O.V.: Nonlinear energy sink with combined nonlinearities: enhanced mitigation of vibrations and amplitude locking phenomenon. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230, 21–33 (2016). https://doi.org/10.1177/0954406215579930

    Article  Google Scholar 

  136. Panagopoulos, P.N., Vakakis, A.F., Tsakirtzis, S.: Transient resonant interactions of finite linear chains with essentially nonlinear end attachments leading to passive energy pumping. Int. J. Solids Struct. 41, 6505–6528 (2004)

    MATH  Google Scholar 

  137. Tsakirtzis, S., Kerschen, G., Panagopoulos, P.N., Vakakis, A.F.: Multi-frequency nonlinear energy transfer from linear oscillators to mdof essentially nonlinear attachments. J. Sound Vib. 285, 483–490 (2005). https://doi.org/10.1016/j.jcv.2004.09.026

    Article  Google Scholar 

  138. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007). https://doi.org/10.1007/s11071-006-9089-x

    Article  MathSciNet  MATH  Google Scholar 

  139. Charlemagne, S., Lamarque, C.H., Savadkoohi, A.T.: Vibratory control of a linear system by addition of a chain of nonlinear oscillators. Acta Mech. 228, 3111–3133 (2017). https://doi.org/10.1007/s00707-017-1867-7

    Article  MathSciNet  MATH  Google Scholar 

  140. Charlemagne, S., Savadkoohi, A.T., Lamarque, C.H.: Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation. Phys. D Nonlinear Phenom. 374, 10–20 (2018). https://doi.org/10.1016/j.physd.2018.03.001

    Article  MathSciNet  MATH  Google Scholar 

  141. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011)

    Google Scholar 

  142. Grinberg, I., Lanton, V., Gendelman, O.V.: Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing. Nonlinear Dyn. 69, 1889–1902 (2012)

    MathSciNet  Google Scholar 

  143. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Process. 62–63, 164–182 (2015)

    Google Scholar 

  144. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331, 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

  145. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Non-Linear Mech. 90, 100–110 (2017)

    Google Scholar 

  146. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014)

    MathSciNet  MATH  Google Scholar 

  147. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81, 041011 (2013). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  148. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10, 011007 (2014). https://doi.org/10.1115/1.4027224

    Article  Google Scholar 

  149. Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 25, 53109 (2015). https://doi.org/10.1063/1.4921193

    Article  MathSciNet  MATH  Google Scholar 

  150. Fang, X., Wen, J.H., Yin, J.F., Yu, D.L.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87, 2677–2695 (2017)

    Google Scholar 

  151. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  152. Yang, T.Z., Liu, T., Tang, Y., Hou, S., Lv, X.F.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97, 1937–1944 (2019). https://doi.org/10.1007/s11071-018-4581-7

    Article  Google Scholar 

  153. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98, 1831–1851 (2019). https://doi.org/10.1007/s11071-019-05291-0

    Article  Google Scholar 

  154. Yao, H., Cao, Y., Wang, Y., Wen, B.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019). https://doi.org/10.1016/j.jsv.2019.114971

    Article  Google Scholar 

  155. Yao, H., Wang, Y., Xie, L., Wen, B.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. 138, 106546 (2020). https://doi.org/10.1016/j.ymssp.2019.106546

    Article  Google Scholar 

  156. Yao, H., Wang, Y., Cao, Y., Wen, B.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103273

    Article  Google Scholar 

  157. Zhao, J., Ming, L., Wang, H., Kacem, N., Huang, Y., Liu, P.: Piezoelectric actuated nonlinear energy sink with tunable attenuation efficiency. J. Appl. Mech. 87, 021003 (2020). https://doi.org/10.1115/1.4045108

    Article  Google Scholar 

  158. Chen, Y.-Y., Qian, Z.-C., Zhao, W., Chang, C.-M.: A magnetic bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. 473, 115233 (2020). https://doi.org/10.1016/j.jsv.2020.115233

    Article  Google Scholar 

  159. Wang, J.J., Wierschem, N.E., Spencer, B.F., Lu, X.L.: Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech. 141, 4014104 (2015)

    Google Scholar 

  160. Wang, J.J., Wierschem, N., Spencer, B.F., Lu, X.L.: Experimental study of track nonlinear energy sinks for dynamic response reduction. Eng. Struct. 94, 9–15 (2015)

    Google Scholar 

  161. Lu, X.L., Liu, Z.P., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Heal. Monit. 24, e2033 (2017). https://doi.org/10.1002/stc.2033

    Article  Google Scholar 

  162. Wang, J.J., Wierschem, N., Spencer, B.F., Lu, X.L.: Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink. Earthq. Eng. Struct. Dyn. 45, 635–652 (2016)

    Google Scholar 

  163. Wang, J.J., Li, H.B., Wang, B., Liu, Z.B., Zhang, C.: Development of a two-phased nonlinear mass damper for displacement mitigation in base-isolated structures. Soil Dyn. Earthq. Eng. 123, 435–448 (2019). https://doi.org/10.1016/j.soildyn.2019.05.007

    Article  Google Scholar 

  164. Wang, J., Wierschem, N.E., Wang, B., Spencer, B.F.: Multi-objective design and performance investigation of a high-rise building with track nonlinear energy sinks. Struct. Des. Tall Spec. Build. (2019). https://doi.org/10.1002/tal.1692

    Article  Google Scholar 

  165. Wei, Y.M., Peng, Z.K., Dong, X.J., Zhang, W.M., Meng, G.: Mechanism of optimal targeted energy transfer. J. Appl. Mech. ASME 84, 11007 (2017). https://doi.org/10.1115/1.4034929

    Article  Google Scholar 

  166. Viguié, R., Kerschen, G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326, 780–793 (2009). https://doi.org/10.1016/j.jsv.2009.05.023

    Article  Google Scholar 

  167. Anubi, O.M., Crane, C.D.: A new active variable stiffness suspension system using a nonlinear energy sink-based controller. Veh. Syst. Dyn. 51, 1588–1602 (2013)

    Google Scholar 

  168. Bellizzi, S., Chung, K.W., Sampaio, R.: Response regimes of a linear oscillator with a nonlinear energy sink involving an active damper with delay. Nonlinear Dyn. 97, 1667–1684 (2019). https://doi.org/10.1007/s11071-019-05089-0

    Article  MATH  Google Scholar 

  169. Anubi, O.M., Crane, C.: A new semiactive variable stiffness suspension system using combined skyhook and nonlinear energy sink-based controllers. IEEE Trans. Control Syst. Technol. 23, 937–947 (2015)

    Google Scholar 

  170. Lamarque, C.H., Thouverez, F., Rozier, B., Dimitrijevic, Z.: Targeted energy transfer in a 2-DOF mechanical system coupled to a non-linear energy sink with varying stiffness. J. Vib. Control 23, 2567–2577 (2017). https://doi.org/10.1177/1077546315618540

    Article  MathSciNet  Google Scholar 

  171. Foroutan, K., Jalali, A., Ahmadi, H.: Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. J. Sound Vib. 447, 155–169 (2019). https://doi.org/10.1016/j.jsv.2019.01.030

    Article  Google Scholar 

  172. Avramov, K.V., Mikhlin, Y.V.: Snap-through truss as a vibration absorber. J. Vib. Control 10, 291–308 (2004). https://doi.org/10.1177/1077546304035604

    Article  MathSciNet  MATH  Google Scholar 

  173. Avramov, K.V., Mikhlin, Y.V.: Snap-through truss as an absorber of forced oscillations. J. Sound Vib. 290, 705–722 (2006). https://doi.org/10.1016/j.jsv.2005.04.022

    Article  Google Scholar 

  174. Avramov, K.V., Gendelman, O.V.: Interaction of elastic system with snap-through vibration absorber. Int. J. Non-Linear Mech. 44, 81–89 (2009). https://doi.org/10.1016/j.ijnonlinmec.2008.09.004

    Article  MATH  Google Scholar 

  175. Laxalde, D., Thouverez, E., Sinou, J.J.: Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. Int. J. Non-Linear Mech. 41, 969–978 (2006). https://doi.org/10.1016/j.ijnonlinmec.2006.09.002

    Article  MATH  Google Scholar 

  176. Tsiatas, G.C., Charalampakis, A.E.: A new hysteretic nonlinear energy sink (HNES). Commun. Nonlinear Sci. Numer. Simul. 60, 1–11 (2018). https://doi.org/10.1016/j.cnsns.2017.12.014

    Article  Google Scholar 

  177. Tsiatas, G.C., Karatzia, D.A.: Reliability analysis of the hysteretic nonlinear energy sink in shock mitigation considering uncertainties. J. Vib. Control (2020). https://doi.org/10.1177/1077546320919304

    Article  Google Scholar 

  178. Savadkoohi, A.T., Lamarque, C.H., Contessa, M.V.: Trapping vibratory energy of main linear structures by coupling light systems with geometrical and material non-linearities. Int. J. Non-Linear Mech. 80, 3–13 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.11.011

    Article  Google Scholar 

  179. Febbo, M., Machado, S.P.: Nonlinear dynamic vibration absorbers with a saturation. J. Sound Vib. 332, 1465–1483 (2013). https://doi.org/10.1016/j.jsv.2012.11.025

    Article  Google Scholar 

  180. Vakakis, A.F., Al-Shudeifat, M.A., Hasan, M.A.: Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment. Meccanica 49, 2375–2397 (2014). https://doi.org/10.1007/s11012-014-0008-9

    Article  MATH  Google Scholar 

  181. Al-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10, 14502 (2015)

    Google Scholar 

  182. Charlemagne, S., Lamarque, C.H., Savadkoohi, A.T.: Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials. J. Sound Vib. 376, 33–47 (2016). https://doi.org/10.1016/j.jsv.2016.03.018

    Article  Google Scholar 

  183. Al-Shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. ASME 139, 24503 (2017). https://doi.org/10.1115/1.4035479

    Article  Google Scholar 

  184. Lo Feudo, S., Touze, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019). https://doi.org/10.1016/j.jsv.2018.09.007

    Article  Google Scholar 

  185. Luo, J., Wierschem, N.E., Fahnestock, L.A., Spencer Jr., B.F., Quinn, D.D., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs. Earthq. Eng. Struct. Dyn. 43, 1829–1851 (2014). https://doi.org/10.1002/eqe.2424

    Article  Google Scholar 

  186. Li, M., Li, J., Fu, K., Ye, A., Xiao, Y., Ma, X., Ren, G., Zhao, Z.: Harnessing noncircular gears to achieve nonlinear passive springs. Mech. Mach. Theory 140, 434–445 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.06.005

    Article  Google Scholar 

  187. Mahmoudkhani, S.: Dynamics of a mass–spring–beam with 0:1:1 internal resonance using the analytical and continuation method. Int. J. Non-Linear Mech. 97, 48–67 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.08.009

    Article  Google Scholar 

  188. Farid, M., Gendelman, O.: Response regimes in equivalent mechanical model of moderately nonlinear liquid sloshing. Nonlinear Dyn. 92, 1517–1538 (2018). https://doi.org/10.1007/s11071-018-4144-y

    Article  Google Scholar 

  189. Dekemele, K., Van Torre, P., Loccufier, M.: Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J. Sound Vib. 473, 115243 (2020). https://doi.org/10.1016/j.jsv.2020.115243

    Article  Google Scholar 

  190. Chen, J.E., Zhang, W., Yao, M.H., Liu, J., Sun, M.: Thermal effect on dynamics of beam with variable-stiffness nonlinear energy sink. Int. J. Nonlinear Sci. Numer. Simul. 21(1), 1–10 (2020). https://doi.org/10.1515/ijnsns-2017-0248

    Article  MathSciNet  MATH  Google Scholar 

  191. Liu, Y., Wang, F., Han, D.D.: Parameters design for a non-linear absorber based on phase trajectory analysis. J. Eng. 2019, 323–327 (2019). https://doi.org/10.1049/joe.2018.9039

    Article  Google Scholar 

  192. Tripathi, A., Grover, P., Kalmar-Nagy, T.: On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems. J. Sound Vib. 388, 272–297 (2017)

    Google Scholar 

  193. Manevitch, L.I., Gourdon, E., Lamarque, C.H.: Parameters optimization for energy pumping in strongly nonhomogeneous 2 dof system. Chaos Solitons Fractals 31, 900–911 (2007). https://doi.org/10.1016/j.chaos.2005.10.036

    Article  Google Scholar 

  194. Manevitch, L.I., Gourdon, E., Lamarque, C.H.: Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system. J. Appl. Mech. 74, 1078–1086 (2007). https://doi.org/10.1115/1.2711221

    Article  Google Scholar 

  195. Huang, D., Li, R., Yang, G.: On the dynamic response regimes of a viscoelastic isolation system integrated with a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 79, 104916 (2019). https://doi.org/10.1016/j.cnsns.2019.104916

    Article  MathSciNet  Google Scholar 

  196. Nguyen, T.A., Pernot, S.: Design criteria for optimally tuned nonlinear energy sinks-part 1: transient regime. Nonlinear Dyn. 69, 1–19 (2012)

    Google Scholar 

  197. Qiu, D.H., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  198. Qiu, D., Seguy, S., Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019). https://doi.org/10.1016/j.jsv.2018.11.021

    Article  Google Scholar 

  199. Sapsis, T.P., Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Kerschen, G., Quinn, D.D.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: part II, analytical study. J. Sound Vib. 325, 297–320 (2009)

    Google Scholar 

  200. Cheng, J.L.: Dynamics characteristic of a linear oscillator with nonlinear damped attachment as energy absorber. Adv. Civ. Ind. Eng. 44–47, 2651–2655 (2011). https://doi.org/10.4028/www.scientific.net/AMM.44-47.2651

    Article  Google Scholar 

  201. Chavarette, F.R., Balthazar, J.M., Felix, J.L.P.: Remarks on an optimal linear control design applied to a nonideal and an ideal structure coupled to an essentially nonlinear oscillator. J. Comput. Nonlinear Dyn. 5, 24501 (2010). https://doi.org/10.1115/1.4000829

    Article  Google Scholar 

  202. Pham, T.T., Lamarque, C.H., Savadkoohi, A.T.: Multi-resonance capturing in a two-degree-of-freedom system under two different harmonic excitations. J. Vib. Control 18, 451–466 (2012). https://doi.org/10.1177/1077546311404268

    Article  MathSciNet  Google Scholar 

  203. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. ASME 136, 21021 (2014). https://doi.org/10.1115/1.4026432

    Article  Google Scholar 

  204. Lin, D.C., Oguamanam, D.C.D.: Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn. 82, 971–986 (2015). https://doi.org/10.1007/s11071-015-2211-1

    Article  MathSciNet  Google Scholar 

  205. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 29, 50–71 (2015)

    MathSciNet  Google Scholar 

  206. Boroson, E., Missoum, S.: Stochastic optimization of nonlinear energy sinks. Struct. Multidiscip. Optim. 55, 633–646 (2017)

    MathSciNet  Google Scholar 

  207. Boroson, E., Missoum, S., Mattei, P.O., Vergez, C.: Optimization under uncertainty of parallel nonlinear energy sinks. J. Sound Vib. 394, 451–464 (2017)

    Google Scholar 

  208. Starosvetsky, Y., Gendelman, O.V.: Response regimes in forced system with non-linear energy sink: quasi-periodic and random forcing. Nonlinear Dyn. 64, 177–195 (2011). https://doi.org/10.1007/s11071-010-9856-6

    Article  MathSciNet  MATH  Google Scholar 

  209. Sapsis, T.P., Vakakis, A.F., Bergman, L.A.: Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment. Probab. Eng. Mech. 26, 119–133 (2011)

    Google Scholar 

  210. Xiong, H., Kong, X.R., Yang, Z.G., Liu, Y.: Response regimes of narrow-band stochastic excited linear oscillator coupled to nonlinear energy sink. Chin. J. Aeronaut. 28, 457–468 (2015)

    Google Scholar 

  211. Oliva, M., Barone, G., Navarra, G.: Optimal design of Nonlinear Energy Sinks for SDOF structures subjected to white noise base excitations. Eng. Struct. 145, 135–152 (2017). https://doi.org/10.1016/j.engstruct.2017.03.027

    Article  Google Scholar 

  212. Xue, J.R., Zhang, Y.W., Ding, H., Chen, L.Q.: Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Appl. Math. Mech. Ed. 41, 1–14 (2020). https://doi.org/10.1007/s10483-020-2560-6

    Article  Google Scholar 

  213. Geng, X.-F., Ding, H., Wei, K.-X., Chen, L.-Q.: Suppression of multiple modal resonances of a cantilever beam by an impact damper. Appl. Math. Mech. Ed. 41(3), 383–400 (2020). https://doi.org/10.1007/s10483-020-2588-9

    Article  Google Scholar 

  214. Starosvetsky, Y., Gendelman, O.V.: Bifurcations of attractors in forced system with nonlinear energy sink: the effect of mass asymmetry. Nonlinear Dyn. 59, 711–731 (2010)

    MathSciNet  MATH  Google Scholar 

  215. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Efficient targeted energy transfer with parallel nonlinear energy sinks: theory and experiments. J. Comput. Nonlinear Dyn. 6, 41005 (2011)

    MATH  Google Scholar 

  216. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011)

    MathSciNet  MATH  Google Scholar 

  217. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67, 37–46 (2012)

    MathSciNet  MATH  Google Scholar 

  218. Nucera, F., Lo Iocono, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313, 57–76 (2008)

    Google Scholar 

  219. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Lect. Notes Appl. Comput. Mech., vol. 43. Springer, Berlin (2009)

    MATH  Google Scholar 

  220. Ahmadi, M., Attari, N.K.A., Shahrouzi, M.: Structural seismic response mitigation using optimized vibro-impact nonlinear energy sinks. J. Earthq. Eng. 19, 193–219 (2015)

    Google Scholar 

  221. Li, T., Qiu, D., Seguy, S., Berlioz, A.: Activation characteristic of a vibro-impact energy sink and its application to chatter control in turning. J. Sound Vib. 405, 1–18 (2017). https://doi.org/10.1016/j.jsv.2017.05.033

    Article  Google Scholar 

  222. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87, 2415–2433 (2017). https://doi.org/10.1007/s11071-016-3200-8

    Article  Google Scholar 

  223. Theurich, T., Gross, J., Krack, M.: Effects of modal energy scattering and friction on the resonance mitigation with an impact absorber. J. Sound Vib. 442, 71–89 (2019). https://doi.org/10.1016/j.jsv.2018.10.055

    Article  Google Scholar 

  224. Koroleva, I.P., Manevitch, L.I.: Stationary and non-stationary dynamics of discrete square membrane. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2020.105174

    Article  MathSciNet  Google Scholar 

  225. Cochelin, B., Herzog, P., Mattei, P.-O.: Experimental evidence of energy pumping in acoustics. C. R. Mec. 334, 639–644 (2006). https://doi.org/10.1016/j.crme.2006.08.005

    Article  Google Scholar 

  226. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329, 2768–2791 (2010)

    Google Scholar 

  227. Shao, J.W., Cochelin, B.: Theoretical and numerical study of targeted energy transfer inside an acoustic cavity by a non-linear membrane absorber. Int. J. Non-Linear Mech. 64, 85–92 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.008

    Article  Google Scholar 

  228. Bellizzi, S., Cote, R., Pachebat, M.: Responses of a two degree-of-freedom system coupled to a nonlinear damper under multi-forcing frequencies. J. Sound Vib. 332, 1639–1653 (2013). https://doi.org/10.1016/j.jsv.2012.11.014

    Article  Google Scholar 

  229. Wu, X., Shao, J.W., Cochelin, B.: Parameters design of a nonlinear membrane absorber applied to 3D acoustic cavity based on targeted energy transfer (TET). Noise Control Eng. J. 64, 99–113 (2016)

    Google Scholar 

  230. Bellet, R., Cochelin, B., Cote, R., Mattei, P.O.: Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers. J. Sound Vib. 331, 5657–5668 (2012)

    Google Scholar 

  231. Wu, X., Shao, J.W., Cochelin, B.: Study of targeted energy transfer inside three-dimensional acoustic cavity by two nonlinear membrane absorbers and an acoustic mode. J. Vib. Acoust. ASME 138, 31017 (2016)

    Google Scholar 

  232. Chauvin, A., Monteil, M., Bellizzi, S., Cote, R., Herzog, P., Pachebat, M.: Acoustic characterization of a nonlinear vibroacoustic absorber at low frequencies and high sound levels. J. Sound Vib. 416, 244–257 (2018). https://doi.org/10.1016/j.jsv.2017.11.031

    Article  Google Scholar 

  233. Bryk, P.Y., Bellizzi, S., Cote, R.: Experimental study of a hybrid electro-acoustic nonlinear membrane absorber. J. Sound Vib. 424, 224–237 (2018). https://doi.org/10.1016/j.jsv.2018.03.014

    Article  Google Scholar 

  234. Bryk, P.-Y., Côte, R., Bellizzi, S.: Targeted energy transfer from a resonant room to a hybrid electro-acoustic nonlinear membrane absorber: numerical and experimental study. J. Sound Vib. 460, 114868 (2019). https://doi.org/10.1016/j.jsv.2019.114868

    Article  Google Scholar 

  235. Shao, J.W., Zeng, T., Wu, X.: Study of a nonlinear membrane absorber applied to 3d acoustic cavity for low frequency broadband noise control. Materials (Basel) 12, 1138 (2019). https://doi.org/10.3390/Ma12071138

    Article  Google Scholar 

  236. Mattei, P.O., Poncot, R., Pachebat, M., Cote, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)

    Google Scholar 

  237. Bitar, D., Gourdon, E., Lamarque, C.H., Collet, M.: Shunt loudspeaker using nonlinear energy sink. J. Sound Vib. 456, 254–271 (2019). https://doi.org/10.1016/j.jsv.2019.05.021

    Article  Google Scholar 

  238. Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: numerical evidences. Nonlinear Dyn. 40, 281–307 (2005)

    MathSciNet  MATH  Google Scholar 

  239. Gourdon, E., Lamarque, C.H.: Energy pumping for a larger span of energy. J. Sound Vib. 285, 711–720 (2005). https://doi.org/10.1016/j.jsv.2004.10.003

    Article  Google Scholar 

  240. Pham, T.T., Pernot, S., Lamarque, C.H.: Competitive energy transfer between a two degree-of-freedom dynamic system and an absorber with essential nonlinearity. Nonlinear Dyn. 62, 573–592 (2010). https://doi.org/10.1007/s11071-010-9745-z

    Article  MathSciNet  MATH  Google Scholar 

  241. Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer, B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 122–146 (2012). https://doi.org/10.1177/1464419311432671

    Article  Google Scholar 

  242. Chen, Y.Y., Qian, Z.C., Chen, K., Tan, P., Tesfamariam, S.: Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction. Struct. Control Heal. Monit. (2019). https://doi.org/10.1002/Stc.2437

    Article  Google Scholar 

  243. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J. Sound Vib. 329, 2973–2994 (2010)

    Google Scholar 

  244. Al-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. J. Comput. Nonlinear Dyn. 11, 21006 (2016). https://doi.org/10.1115/1.4030540

    Article  Google Scholar 

  245. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014)

    Google Scholar 

  246. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017). https://doi.org/10.1016/j.jsv.2016.11.003

    Article  Google Scholar 

  247. Wang, J., Wang, B., Liu, Z., Zhang, C., Li, H.: Experimental and numerical studies of a novel asymmetric nonlinear mass damper for seismic response mitigation. Struct. Control Heal. Monit. (2020). https://doi.org/10.1002/stc.2513

    Article  Google Scholar 

  248. Georgiades, F., Vakakis, A.F., Kerschen, G.: Broadband passive targeted energy pumping from a linear dispersive rod to a lightweight essentially non-linear end attachment. Int. J. Non-Linear Mech. 42, 773–788 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.03.005

    Article  Google Scholar 

  249. Panagopoulas, P., Georgiades, F., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A.: Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment. Int. J. Solids Struct. 44, 6256–6278 (2007). https://doi.org/10.1016/j.ijsolstr.2007.02.025

    Article  MATH  Google Scholar 

  250. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.11.007

    Article  Google Scholar 

  251. Yang, Y.Q., Wang, X.: Investigation into the linear velocity response of cantilever beam embedded with impact damper. J. Vib. Control 25, 1365–1378 (2019). https://doi.org/10.1177/1077546318821711

    Article  MathSciNet  Google Scholar 

  252. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    MATH  Google Scholar 

  253. Avramov, K.V., Gendelman, O.V.: Forced oscillations of beam with essentially nonlinear absorber. Strength Mater. 41, 310–317 (2009). https://doi.org/10.1007/s11223-009-9125-4

    Article  Google Scholar 

  254. Avramov, K.V., Gendelman, O.V.: On interaction of vibrating beam with essentially nonlinear absorber. Meccanica 45, 355–365 (2010). https://doi.org/10.1007/s11012-009-9252-9

    Article  MathSciNet  MATH  Google Scholar 

  255. Younesian, D., Nankali, A., Motieyan, M.E.: Application of the nonlinear energy sink systems in vibration suppression of railway bridges. In: Proc. ASME 10th Bienn. Conf. Eng. Syst. Des. Anal. 2010, vol. 5, pp 227–231 (2010)

  256. Parseh, M., Dardel, M., Ghasemi, M.H.: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn. 81, 1981–2002 (2015)

    MathSciNet  Google Scholar 

  257. Chen, J.E., He, W., Zhang, W., Yao, M.H., Liu, J., Sun, M.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91, 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

    Article  Google Scholar 

  258. Bab, S., Khadem, S.E., Mahdiabadi, M.K., Shahgholi, M.: Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES). J. Vib. Control 23, 1001–1025 (2017)

    MathSciNet  Google Scholar 

  259. Mahmoudkhani, S.: The transient dynamics of a beam mounted on spring supports and equipped with the nonlinear energy sink. Int. J. Eng. 30, 1545–1554 (2017). https://doi.org/10.5829/ije.2017.30.10a.16

    Article  Google Scholar 

  260. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  261. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.: Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int. J. Non-Linear Mech. 79, 48–65 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.11.005

    Article  Google Scholar 

  262. Chen, J.E., Zhang, W., Yao, M.H., Liu, J.: Vibration suppression for truss core sandwich beam based on principle of nonlinear targeted energy transfer. Compos. Struct. 171, 419–428 (2017). https://doi.org/10.1016/j.compstruct.2017.03.030

    Article  Google Scholar 

  263. Zhang, Y.W., Hou, S., Zhang, Z., Zang, J., Ni, Z.Y., Teng, Y.Y., Chen, L.Q.: Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-019-05442-3

    Article  Google Scholar 

  264. Izzi, M., Caracoglia, L., Noe, S.: Investigating the use of targeted-energy-transfer devices for stay-cable vibration mitigation. Struct. Control Heal. Monit. 23, 315–332 (2016). https://doi.org/10.1002/stc.1772

    Article  Google Scholar 

  265. Weiss, M., Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Control of vertical oscillations of a cable by a piecewise linear absorber. J. Sound Vib. 435, 281–300 (2018). https://doi.org/10.1016/j.jsv.2018.07.033

    Article  Google Scholar 

  266. Georgiades, F., Vakakis, A.F.: Passive targeted energy transfers and strong modal interactions in the dynamics of a thin plate with strongly nonlinear attachments. Int. J. Solids Struct. 46, 2330–2353 (2009)

    MATH  Google Scholar 

  267. Taleshi, M., Dardel, M., Pashaie, M.H.: Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber. Chaos Solitons Fractals 92, 56–72 (2016)

    MathSciNet  MATH  Google Scholar 

  268. Sun, Y.H., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for a flywheel system vibration reduction. J. Sound Vib. 429, 305–324 (2018). https://doi.org/10.1016/j.jsv.2018.05.025

    Article  Google Scholar 

  269. Zhang, Y.-W., Zhang, H., Hou, S., Xu, K.-F., Chen, L.-Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016). https://doi.org/10.1016/j.actaastro.2016.02.021

    Article  Google Scholar 

  270. Chen, J., Zhang, W., Yao, M., Liu, J., Sun, M.: Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Compos. Struct. 193, 180–188 (2018). https://doi.org/10.1016/j.compstruct.2018.03.048

    Article  Google Scholar 

  271. Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014). https://doi.org/10.1007/s11071-014-1329-x

    Article  Google Scholar 

  272. Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18, 1916–1930 (2013). https://doi.org/10.1016/j.cnsns.2012.11.028

    Article  MathSciNet  MATH  Google Scholar 

  273. Blanchard, A.B., Gendelman, O.V., Bergman, L.A., Vakakis, A.F.: Capture into slow-invariant-manifold in the fluid-structure dynamics of a sprung cylinder with a nonlinear rotator. J. Fluids Struct. 63, 155–173 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.03.009

    Article  Google Scholar 

  274. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator. Phys. D Nonlinear Phenom. 350, 26–44 (2017). https://doi.org/10.1016/j.physd.2017.03.003

    Article  MathSciNet  Google Scholar 

  275. Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017). https://doi.org/10.1016/j.cnsns.2016.05.014

    Article  Google Scholar 

  276. Chen, D.Y., Abbas, L.K., Wang, G.P., Rui, X.T., Marzocca, P.: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs). Nonlinear Dyn. 94, 925–957 (2018). https://doi.org/10.1007/s11071-018-4402-z

    Article  Google Scholar 

  277. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593–609 (2019). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  278. Blanchard, A.B., Pearlstein, A.J.: On-off switching of vortex shedding and vortex-induced vibration in crossflow past a circular cylinder by locking or releasing a rotational nonlinear energy sink. Phys. Rev. Fluids (2020). https://doi.org/10.1103/Physrevfluids.5.023902

    Article  Google Scholar 

  279. Dai, H.L., Abdelkefi, A., Wang, L.: Usefulness of passive non-linear energy sinks in controlling galloping vibrations. Int. J. Non-Linear Mech. 81, 83–94 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.01.007

    Article  Google Scholar 

  280. Guo, H.L., Liu, B., Yu, Y.Y., Cao, S.Q., Chen, Y.S.: Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink. Arch. Appl. Mech. 87, 1007–1018 (2017). https://doi.org/10.1007/s00419-017-1227-z

    Article  Google Scholar 

  281. Mamaghani, A.E., Khadem, S.E., Bab, S., Pourkiaee, S.M.: Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int. J. Mech. Sci. 138, 427–447 (2018). https://doi.org/10.1016/j.ijmecsci.2018.02.032

    Article  Google Scholar 

  282. Blanchard, A.B., Bergman, L.A., Vakakis, A.F., Pearlstein, A.J.: Coexistence of multiple long-time solutions for two-dimensional laminar flow past a linearly sprung circular cylinder with a rotational nonlinear energy sink. Phys. Rev. Fluids 4, 54401 (2019). https://doi.org/10.1103/Physrevfluids.4.054401

    Article  Google Scholar 

  283. Nankali, A., Lee, Y.S., Kalmar-Nagy, T.: Targeted energy transfers for suppressing regenerative machine tool vibrations. J. Comput. Nonlinear Dyn. 12, 11010 (2017). https://doi.org/10.1115/1.4034397

    Article  Google Scholar 

  284. Franzini, G.R., Campedelli, G.R., Mazzilli, C.E.N.: A numerical investigation on passive suppression of the parametric instability phenomenon using a rotative non-linear vibration absorber. Int. J. Non-Linear Mech. 105, 249–260 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.014

    Article  Google Scholar 

  285. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. 13, 41–75 (2006). https://doi.org/10.1002/stc.143

    Article  Google Scholar 

  286. Gendelman, O.V., Bar, T.: Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Phys. D Nonlinear Phenom. 239, 220–229 (2010)

    MathSciNet  MATH  Google Scholar 

  287. Domany, E., Gendelman, O.V.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J. Sound Vib. 332, 5489–5507 (2013)

    Google Scholar 

  288. Bergeot, B., Bellizzi, S.: Asymptotic analysis of passive mitigation of dynamic instability using a nonlinear energy sink network. Nonlinear Dyn. 94, 1501–1522 (2018). https://doi.org/10.1007/s11071-018-4438-0

    Article  Google Scholar 

  289. Viguie, R., Kerschen, G., Golinval, J.C., McFarland, D.M., Bergman, L.A., Vakakis, A.F., van de Wouw, N.: Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Signal Process. 23, 148–169 (2009)

    Google Scholar 

  290. Ahmadabadi, Z.N., Khadem, S.E.: Self-excited oscillations attenuation of drill-string system using nonlinear energy sink. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227, 230–245 (2013). https://doi.org/10.1177/0954406212447226

    Article  Google Scholar 

  291. Bergeot, B., Berger, S., Bellizzi, S.: Mode coupling instability mitigation in friction systems by means of nonlinear energy sinks: Numerical highlighting and local stability analysis. J. Vib. Control 24, 3487–3511 (2018). https://doi.org/10.1177/1077546317707101

    Article  MathSciNet  Google Scholar 

  292. Snoun, C., Bergeot, B., Berger, S.: Prediction of the dynamic behavior of an uncertain friction system coupled to nonlinear energy sinks using a multi-element generalized polynomial chaos approach. Eur. J. Mech. A Solids 80, 103917 (2020). https://doi.org/10.1016/j.euromechsol.2019.103917

    Article  MathSciNet  MATH  Google Scholar 

  293. Gourc, E., Seguy, S., Michon, G., Berlioz, A.: Chatter control in turning process with a nonlinear energy sink. Adv. Mater. Res. 698, 89–98 (2013). https://doi.org/10.4028/www.scientific.net/AMR.698.89

    Article  Google Scholar 

  294. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Google Scholar 

  295. Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int. J. Non-Linear Mech. 67, 251–266 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.08.016

    Article  Google Scholar 

  296. Bab, S., Khadem, S.E., Shahgholi, M.: Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink. Meccanica 50, 2441–2460 (2015)

    MathSciNet  Google Scholar 

  297. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech. Syst. Signal Process. 84, 128–157 (2017)

    Google Scholar 

  298. Guo, C.Z., Al-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.H.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79, 527–538 (2015)

    Google Scholar 

  299. Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87, 169–190 (2017). https://doi.org/10.1007/s11071-016-3034-4

    Article  MATH  Google Scholar 

  300. Haris, A., Motato, E., Mohammadpour, M., Theodossiades, S., Rahnejat, H., O’Mahony, M., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain. Int. J. Non-Linear Mech. 96, 22–35 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.06.008

    Article  Google Scholar 

  301. Dolatabadi, N., Theodossiades, S., Rothberg, S.J.: Design optimization study of a nonlinear energy absorber for internal combustion engine pistons. J. Comput. Nonlinear Dyn. 13, 90910 (2018). https://doi.org/10.1115/1.4040239

    Article  Google Scholar 

  302. Tehrani, G.G., Dardel, M.: Mitigation of nonlinear oscillations of a Jeffcott rotor system with an optimized damper and nonlinear energy sink. Int. J. Non-Linear Mech. 98, 122–136 (2018). https://doi.org/10.1016/j.ijnonlinmec.2017.10.011

    Article  Google Scholar 

  303. Tehrani, G.G., Dardel, M.: Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers. Commun. Nonlinear Sci. Numer. Simul. 69, 1–30 (2019). https://doi.org/10.1016/j.cnsns.2018.08.007

    Article  MathSciNet  Google Scholar 

  304. Tehrani, G.G., Dardel, M., Pashaei, M.H.: Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02557-x

    Article  MATH  Google Scholar 

  305. Ahmadabadi, Z.N.: Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment. J. Sound Vib. 443, 139–154 (2019). https://doi.org/10.1016/j.jsv.2018.11.040

    Article  Google Scholar 

  306. Taghipour, J., Dardel, M., Pashaei, M.H.: Vibration mitigation of a nonlinear rotor system with linear and nonlinear vibration absorbers. Mech. Mach. Theory 128, 586–615 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.07.001

    Article  Google Scholar 

  307. Bab, S., Najafi, M., Sola, J.F., Abbasi, A.: Annihilation of non-stationary vibration of a gas turbine rotor system under rub-impact effect using a nonlinear absorber. Mech. Mach. Theory 139, 379–406 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.05.005

    Article  Google Scholar 

  308. Haris, A., Alevras, P., Mohammadpour, M., Theodossiades, S., O’Mahony, M.: Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dyn. 100, 33–49 (2020). https://doi.org/10.1007/s11071-020-05502-z

    Article  Google Scholar 

  309. Bergeot, B., Bellizzi, S., Cochelin, B.: Analysis of steady-state response regimes of a helicopter ground resonance model including a non-linear energy sink attachment. Int. J. Non-Linear Mech. 78, 72–89 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.10.006

    Article  Google Scholar 

  310. Bergeot, B., Bellizzi, S., Cochelin, B.: Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber. Adv. Aircr. Spacecr. Sci. 3, 271–298 (2016). https://doi.org/10.12989/aas.2016.3.3.271

    Article  Google Scholar 

  311. Bergeot, B., Bellizzi, S., Cochelin, B.: Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades. J. Sound Vib. 392, 41–55 (2017)

    Google Scholar 

  312. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks. AIAA J. 56, 2856–2869 (2018). https://doi.org/10.2514/1.J056530

    Article  Google Scholar 

  313. Zhang, Y.W., Zang, J., Yang, T.Z., Fang, B., Wen, X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng. 2013, 348042 (2013). https://doi.org/10.1155/2013/348042

    Article  MathSciNet  MATH  Google Scholar 

  314. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81, 425–435 (2015)

    MathSciNet  MATH  Google Scholar 

  315. Luongo, A., Zulli, D.: On the use of the multiple scale harmonic balance method for nonlinear energy sinks controlled systems. Struct. Nonlinear Dyn. Diagn. 168, 235–260 (2015). https://doi.org/10.1007/978-3-319-19851-4_12

    Article  MathSciNet  Google Scholar 

  316. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50, 781–794 (2015). https://doi.org/10.1007/s11012-014-0057-0

    Article  MathSciNet  MATH  Google Scholar 

  317. Zhang, Y.W., Zhang, Z., Chen, L.Q., Yang, T.Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82, 61–71 (2015)

    MathSciNet  Google Scholar 

  318. Zhang, Y.W., Hou, S., Xu, K.F., Yang, T.Z., Chen, L.Q.: Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mech. Solida Sin. 30, 674–682 (2017). https://doi.org/10.1016/j.camss.2017.09.004

    Article  Google Scholar 

  319. Zhang, Y.W., Yuan, B., Fang, B., Chen, L.Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017). https://doi.org/10.1007/s11071-016-3107-4

    Article  Google Scholar 

  320. Yang, T.-Z., Yang, X.-D., Li, Y., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control 20, 1293–1300 (2014). https://doi.org/10.1177/1077546313480547

    Article  MathSciNet  Google Scholar 

  321. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86, 1761–1795 (2016)

    MATH  Google Scholar 

  322. Zhao, X.Y., Zhang, Y.W., Ding, H., Chen, L.Q.: Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. Int. J. Appl. Mech. (2018). https://doi.org/10.1142/s1758825118500965

    Article  Google Scholar 

  323. Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L., Ni, Q.: Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dyn. 95, 1435–1456 (2019). https://doi.org/10.1007/s11071-018-4637-8

    Article  Google Scholar 

  324. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2019.106442

    Article  Google Scholar 

  325. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. Trans. ASME 139, 021011 (2017). https://doi.org/10.1115/1.4035377

    Article  Google Scholar 

  326. Zhang, Y.W., Zhou, L., Wang, S., Yang, T.Z., Chen, L.Q.: Vibration power flow characteristics of the whole-spacecraft with a nonlinear energy sink. J. Low Freq. Noise Vib. Active Control 38, 341–351 (2019). https://doi.org/10.1177/1461348419829363

    Article  Google Scholar 

  327. Yang, K., Zhang, Y.W., Ding, H., Chen, L.Q., Zang, J.: Space structure vibration control based on passive nonlinear energy sink. J. Vib. Control 12, 205–209 (2014)

    Google Scholar 

  328. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45, 693–711 (2007). https://doi.org/10.2514/1.24062

    Article  Google Scholar 

  329. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45, 2391–2400 (2007). https://doi.org/10.2514/1.28300

    Article  Google Scholar 

  330. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46, 1371–1394 (2008)

    Google Scholar 

  331. Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Non-linear system identification of the dynamics of aeroelastic instability suppression based on targeted energy transfers. Aeronaut. J. 114, 61–82 (2010). https://doi.org/10.1017/S0001924000003547

    Article  Google Scholar 

  332. Vaurigaud, B., Manevitch, L.I., Lamarque, C.H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330, 2580–2595 (2011). https://doi.org/10.1016/j.jsv.2010.12.011

    Article  Google Scholar 

  333. Guo, H.L., Chen, Y.S., Yang, T.Z.: Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink. Appl. Math. Mech. Ed. 34, 1277–1290 (2013)

    MathSciNet  MATH  Google Scholar 

  334. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86, 2161–2177 (2016)

    MathSciNet  Google Scholar 

  335. Zhang, W.F., Liu, Y., Cao, S.L., Chen, J.H., Zhang, Z.X., Zhang, J.Z.: Targeted energy transfer between 2-D wing and nonlinear energy sinks and their dynamic behaviors. Nonlinear Dyn. 90, 1841–1850 (2017). https://doi.org/10.1007/s11071-017-3767-8

    Article  Google Scholar 

  336. Guo, H.L., Cao, S.Q., Yang, T.Z., Chen, Y.S.: Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink. Nonlinear Dyn. 94, 857–872 (2018). https://doi.org/10.1007/s11071-018-4398-4

    Article  Google Scholar 

  337. Pidaparthi, B., Missoum, S.: Stochastic optimization of nonlinear energy sinks for the mitigation of limit cycle oscillations. AIAA J. 57, 2134–2144 (2019). https://doi.org/10.2514/1.j057897

    Article  Google Scholar 

  338. Zhang, W., Fang, J., He, Y., Zhang, J.: Resonance capture and targeted energy transfer for suppressing aeroelastic instability of 2-D wing. Eur. Phys. J. Spec. Top. 228, 1873–1889 (2019). https://doi.org/10.1140/epjst/e2019-800227-1

    Article  Google Scholar 

  339. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F., Andersen, G.: Targeted energy transfer between a swept wing and winglet-housed nonlinear energy sink. AIAA J. 52, 2633–2651 (2014)

    Google Scholar 

  340. Hubbard, S.A., Fontenot, R.L., McFarland, D.M., Cizma, P.G.A., Bergman, L.A., Strganac, T.W., Vakakis, A.F.: Transonic aeroelastic instability suppression for a swept wing by targeted energy transfer. J. Aircr. 51, 1467–1482 (2014). https://doi.org/10.2514/1.C032339

    Article  Google Scholar 

  341. Pacheco, D.R.Q., Marques, F.D., Ferreira, A.J.M.: Panel flutter suppression with nonlinear energy sinks: numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.08.009

    Article  Google Scholar 

  342. Yan, Z.M., Ragab, S.A., Hajj, M.R.: Passive control of transonic flutter with a nonlinear energy sink. Nonlinear Dyn. 91, 577–590 (2018). https://doi.org/10.1007/s11071-017-3894-2

    Article  Google Scholar 

  343. Tian, W., Li, Y., Li, P., Yang, Z., Zhao, T.: Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J. Sound Vib. 462, 114942 (2019). https://doi.org/10.1016/j.jsv.2019.114942

    Article  Google Scholar 

  344. Kumar, P., Kumar, A., Pandey, C., Dewangan, S., Jha, S.K.: Materials for energy harvesting with a nonlinear energy sink: a literature review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.795

    Article  Google Scholar 

  345. Hou, S., Teng, Y.-Y., Zhang, Y.-W., Zang, J.: Enhanced energy harvesting of a nonlinear energy sink by internal resonance. Int. J. Appl. Mech. 11, 1950100 (2020). https://doi.org/10.1142/s175882511950100x

    Article  Google Scholar 

  346. Zhang, Y.W., Lu, Y.N., Chen, L.Q.: Energy harvesting via nonlinear energy sink for whole-spacecraft. Sci. China Technol. Sci. 62, 1483–1491 (2019). https://doi.org/10.1007/s11431-018-9468-8

    Article  Google Scholar 

  347. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333, 4444–4457 (2014). https://doi.org/10.1016/j.jsv.2014.04.033

    Article  Google Scholar 

  348. Zhang, Y., Tang, L.H., Liu, K.F.: Piezoelectric energy harvesting with a nonlinear energy sink. J. Intell. Mater. Syst. Struct. 28, 307–322 (2017)

    Google Scholar 

  349. Li, X., Zhang, Y., Ding, H., Chen, L.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech. Ed. 38, 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  350. Xiong, L.Y., Tang, L.H., Liu, K.F., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D Appl. Phys. 51, 185502 (2018). https://doi.org/10.1088/1361-6463/aab9e3

    Article  Google Scholar 

  351. Ahmadabadi, Z.N., Khadem, S.E.: Optimal vibration control and energy scavenging using collocated nonlinear energy sinks and piezoelectric elements. In: Proc. ASME Int. Mech. Eng. Congr. Expo. 2018, vol. 4b (2019)

  352. Li, X., Zhang, Y.W., Ding, H., Chen, L.Q.: Dynamics and evaluation of a nonlinear energy sink integrated by a piezoelectric energy harvester under a harmonic excitation. J. Vib. Control 25, 851–867 (2019). https://doi.org/10.1177/1077546318802456

    Article  MathSciNet  Google Scholar 

  353. Raj, P.V.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.053

    Article  Google Scholar 

  354. Zhang, Y.W., Su, C., Ni, Z.Y., Zang, J., Chen, L.Q.: A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 221, 110875 (2019). https://doi.org/10.1016/j.compstruct.2019.04.047

    Article  Google Scholar 

  355. Zhang, Y.W., Wang, C., Yuan, B., Fang, B.: Integration of geometrical and material nonlinear energy sink with piezoelectric material energy harvester. Shock Vib. 2017, 1987456 (2017)

    Google Scholar 

  356. Remick, K., Joo, H.K., McFarland, D.M., Sapsis, T.P., Bergman, L., Quinn, D.D., Vakakis, A.: Sustained high-frequency energy harvesting through a strongly nonlinear electromechanical system under single and repeated impulsive excitations. J. Sound Vib. 333, 3214–3235 (2014). https://doi.org/10.1016/j.jsv.2014.02.017

    Article  Google Scholar 

  357. Remick, K., Vakakis, A., Bergman, L., McFarland, D.M., Quinn, D.D., Sapsis, T.P.: Sustained high-frequency dynamic instability of a nonlinear system of coupled oscillators forced by single or repeated impulses: theoretical and experimental results. J. Vib. Acoust. ASME 136, 11013 (2014). https://doi.org/10.1115/1.4025605

    Article  Google Scholar 

  358. Kremer, D., Liu, K.F.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333, 4859–4880 (2014)

    Google Scholar 

  359. Kremer, D., Liu, K.F.: A nonlinear energy sink with an energy harvester: harmonically forced responses. J. Sound Vib. 410, 287–302 (2017). https://doi.org/10.1016/j.jsv.2017.08.042

    Article  Google Scholar 

  360. Remick, K., Quinn, D.D., McFarland, D.M., Bergman, L., Vakakis, A.: High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 370, 259–279 (2016). https://doi.org/10.1016/j.jsv.2016.01.051

    Article  Google Scholar 

  361. Remick, K., Quinn, D.D., McFarland, D.M., Bergman, L., Vakakis, A.: High-frequency vibration energy harvesting from repeated impulsive forcing utilizing intentional dynamic instability caused by strong nonlinearity. J. Intell. Mater. Syst. Struct. 28, 468–487 (2017). https://doi.org/10.1177/1045389X16649699

    Article  Google Scholar 

  362. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017). https://doi.org/10.1016/j.jsv.2016.12.019

    Article  Google Scholar 

  363. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. J. Vib. Acoust. Trans. ASME (2018). https://doi.org/10.1115/1.4038033

    Article  Google Scholar 

  364. Zhang, Y.W., Wang, S.L., Ni, Z.Y., Fang, Z.W., Zang, J., Fang, B.: Integration of a nonlinear vibration absorber and levitation magnetoelectric energy harvester for whole-spacecraft systems. Acta Mech. Solida Sin. 32, 298–309 (2019). https://doi.org/10.1007/s10338-019-00081-y

    Article  Google Scholar 

  365. Tian, W., Li, Y., Yang, Z., Li, P., Zhao, T.: Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink. Int. J. Mech. Sci. 172, 105417 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105417

    Article  Google Scholar 

  366. Chiacchiari, S., Romeo, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. Int. J. Non-Linear Mech. 94, 84–97 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.007

    Article  Google Scholar 

  367. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018). https://doi.org/10.1016/j.jsv.2018.08.026

    Article  Google Scholar 

  368. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87, 2127–2146 (2017)

    Google Scholar 

  369. Lai, Z.H., Thomson, G., Yurchenko, D., Val, D.V., Rodgers, E.: On energy harvesting from a vibro-impact oscillator with dielectric membranes. Mech. Syst. Signal Process. 107, 105–121 (2018). https://doi.org/10.1016/j.ymssp.2018.01.025

    Article  Google Scholar 

  370. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312, 234–256 (2008). https://doi.org/10.1016/j.jsv.2007.10.035

    Article  Google Scholar 

  371. Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 56, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  372. Thanh, T.P., Lamarque, C.H., Pernot, S.: Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance. Commun. Nonlinear Sci. Numer. Simul. 16, 2279–2288 (2011). https://doi.org/10.1016/j.cnsns.2010.04.050

    Article  MathSciNet  MATH  Google Scholar 

  373. Lamarque, C.H., Savadkoohi, A.T.: Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica 49, 1917–1928 (2014)

    MathSciNet  MATH  Google Scholar 

  374. Zulli, D., Luongo, A.: Control of primary and subharmonic resonances of a Duffing oscillator via non-linear energy sink. Int. J. Non-Linear Mech. 80, 170–182 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.08.014

    Article  Google Scholar 

  375. Sun, M., Chen, J.E.: Dynamics of nonlinear primary oscillator with nonlinear energy sink under harmonic excitation: effects of nonlinear stiffness. Math. Probl. Eng. 2018, 5693618 (2018). https://doi.org/10.1155/2018/5693618

    Article  MathSciNet  MATH  Google Scholar 

  376. Alisverisci, G.F., Bayiroglu, H., Felix, J.L.P., Balthazar, J.M., da Fonseca, R.M.L.R.: A nonlinear electromechanical pendulum arm with a nonlinear energy sink control (NES) approach. J. Theor. Appl. Mech. 54, 975–986 (2016)

    Google Scholar 

  377. Hurel, G., Savadkoohi, A.T., Lamarque, C.H.: Nonlinear vibratory energy exchanges between a two-degree-of-freedom pendulum and a nonlinear absorber. J. Eng. Mech. 145, 4019058 (2019). https://doi.org/10.1061/(Asce)Em.1943-7889.0001620

    Article  Google Scholar 

  378. Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Manevitch, L.I.: Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau–Zener effect in coupled granular chains. Phys. D Nonlinear Phenom. 252, 46–58 (2013). https://doi.org/10.1016/j.physd.2013.02.011

    Article  MathSciNet  MATH  Google Scholar 

  379. Zhang, Y.J., Moore, K.J., McFarland, D.M., Vakakis, A.F.: Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation. J. Appl. Phys. 118, 234901 (2015). https://doi.org/10.1063/1.4937898

    Article  Google Scholar 

  380. Weiss, M., Savadkoohi, A.T., Gendelman, O.V., Lamarque, C.H.: Dynamical behavior of a mechanical system including Saint-Venant component coupled to a non-linear energy sink. Int. J. Non-Linear Mech. 63, 10–18 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.03.002

    Article  Google Scholar 

  381. Lamarque, C.H., Savadkoohi, A.T.: Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink. Contin. Mech. Thermodyn. 27, 819–833 (2015)

    MathSciNet  MATH  Google Scholar 

  382. Lamarque, C.H., Savadkoohi, A.T.: Localization of vibratory energy of main linear/nonlinear structural systems by nonlinear energy sink. Struct. Nonlinear Dyn. Diagn. 168, 201–233 (2015). https://doi.org/10.1007/978-3-319-19851-4_11

    Article  MathSciNet  Google Scholar 

  383. Saeed, A.S., Al-Shudeifat, M.A.: Vibration suppression in two-dimensional oscillation dynamical systems. In: Proc. ASME Int. Mech. Eng. Congr. Expo. 2018, vol. 4b (2019)

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 11772181), the Program of Shanghai Municipal Education Commission (No. 17SG38, 2019-01-07-00-09-E00018), the Key Research Projects of Shanghai Science and Technology Commission (No. 18010500100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Chen, LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn 100, 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05724-1

Keywords

Navigation