Skip to main content
Log in

A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A quasi-zero-stiffness (QZS) vibration isolator is an ideal device for low-frequency vibration isolation. However, its stiffness increases steeply against the displacement, which renders a QZS isolator to be less effective in an ultra-low-frequency range. Aiming at solving this issue, a new nonlinear ultra-low-frequency vibration isolator with a dual quasi-zero-stiffness (DQZS) mechanism is put forward by combining two subordinate QZS mechanisms with a vertical linear spring in parallel. The subordinate mechanism itself has a QZS feature, which provides negative stiffness along the vertical direction through an oblique link rod. The parameter design of the isolator is carried out to fulfil quasi-zero stiffness, which shows that the stiffness–displacement curve is much lower and more flat than the traditional QZS (TQZS) isolator in a wide displacement range. The dynamic behaviours of the DQZS vibration isolation system (VIS) are determined by employing the harmonic balance method, and the vibration isolation performance is evaluated by using theoretical, numerical and experimental transmissibility. It shows that both the beginning frequency of the vibration isolation and the peak transmissibility of the DQZS VIS are lower than the TQZS isolator, which indicates better vibration isolation performance of this ultra-low-stiffness DQZS VIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Preumont, A.: Vibration Control of Active Structures. Springer, Cham (2018)

    Book  Google Scholar 

  2. Zou, Y., Tong, L., Steven, G.P.: Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J. Sound Vib. 230, 357–378 (2000). https://doi.org/10.1006/jsvi.1999.2624

    Article  Google Scholar 

  3. Wang, X.C., Mo, J.L., Ouyang, H., Lu, X.D., Huang, B., Zhou, Z.: The effects of grooved rubber blocks on stick–slip and wear behaviours. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233, 2939–2954 (2019). https://doi.org/10.1177/0954407018811039

    Article  Google Scholar 

  4. Yang, Y., Yang, Y., Cao, D., Chen, G., Jin, Y.: Response evaluation of imbalance-rub-pedestal looseness coupling fault on a geometrically nonlinear rotor system. Mech. Syst. Signal Process. 118, 423–442 (2019). https://doi.org/10.1016/j.ymssp.2018.08.063

    Article  Google Scholar 

  5. Lee, W.B., Cheung, C.F., To, S.: Materials induced vibration in ultra-precision machining. J. Mater. Process. Technol. 89–90, 318–325 (1999). https://doi.org/10.1016/S0924-0136(99)00146-6

    Article  Google Scholar 

  6. Rakheja, S., Wu, J.Z., Dong, R.G., Schopper, A.W., Boileau, P.É.: Comparison of biodynamic models of the human hand-arm system for applications to hand-held power tools. J. Sound Vib. 249, 55–82 (2002). https://doi.org/10.1006/jsvi.2001.3831

    Article  Google Scholar 

  7. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  8. Wang, X., Liu, H., Chen, Y., Gao, P.: Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis. Int. J. Mech. Sci. 142–143, 235–244 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.053

    Article  Google Scholar 

  9. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  10. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 46218 (2006). https://doi.org/10.1103/PhysRevE.74.046218

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017). https://doi.org/10.1007/s11071-016-3093-6

    Article  Google Scholar 

  12. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  13. Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019). https://doi.org/10.1016/j.ymssp.2019.02.008

    Article  Google Scholar 

  14. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. U.S.A. 113, 9722–9727 (2016). https://doi.org/10.1073/pnas.1604838113

    Article  Google Scholar 

  15. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315, 700–711 (2008). https://doi.org/10.1016/j.jsv.2007.12.019

    Article  Google Scholar 

  16. Bouna, H.S., Nbendjo, B.R.N., Woafo, P.: Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dyn. 100, 1125–1141 (2020). https://doi.org/10.1007/s11071-020-05580-z

    Article  Google Scholar 

  17. Wang, K., Zhou, J., Xu, D.: Sensitivity analysis of parametric errors on the performance of a torsion quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 134, 336–346 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.026

    Article  Google Scholar 

  18. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  19. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015). https://doi.org/10.1016/j.jsv.2014.10.027

    Article  Google Scholar 

  20. Wang, K., Zhou, J., Daolin, X., Ouyang, H.: Tunable low-frequency torsional-wave band gaps in a meta-shaft. J. Phys. D Appl. Phys. 52, 055104 (2019). https://doi.org/10.1088/1361-6463/aaf039

    Article  Google Scholar 

  21. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014). https://doi.org/10.1016/j.jsv.2013.12.025

    Article  Google Scholar 

  22. Wu, Z., Jing, X., Sun, B., Li, F.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2015). https://doi.org/10.1016/j.jsv.2016.06.004

    Article  Google Scholar 

  23. Feng, X., Jing, X.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping and nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019). https://doi.org/10.1016/j.ymssp.2018.08.040

    Article  Google Scholar 

  24. Bian, J., Jing, X.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019). https://doi.org/10.1016/j.ymssp.2018.02.014

    Article  Google Scholar 

  25. Palomares, E., Nieto, A.J., Morales, A.L., Chicharro, J.M., Pintado, P.: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system. J. Sound Vib. 414, 31–42 (2018). https://doi.org/10.1016/j.jsv.2017.11.006

    Article  Google Scholar 

  26. Kamaruzaman, N.A., Robertson, W.S.P., Ghayesh, M.H., Cazzolato, B.S., Zander, A.C.: Improving passive stability of a planar quasi-zero stiffness magnetic levitation system via lever arm. In: 2018 IEEE International Magnetics Conference, pp. 1–5. https://doi.org/10.1109/INTMAG.2018.8508594

  27. Deng, Z.: Review of magnetostrictive materials for structural review of magnetostrictive materials for structural vibration control. Smart Mater. Struct. 27, 113001 (2018). https://doi.org/10.1088/1361-665X/aadff5

    Article  Google Scholar 

  28. Wang, K., Zhou, J., Wang, Q., Ouyang, H., Xu, D.: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Appl. Phys. Lett. 114, 251902 (2019). https://doi.org/10.1063/1.5099425

    Article  Google Scholar 

  29. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015). https://doi.org/10.1016/j.jsv.2015.02.001

    Article  Google Scholar 

  30. Cai, C., Zhou, J., Wu, L., Wang, K., Xu, D., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020). https://doi.org/10.1016/j.compstruct.2020.111862

    Article  Google Scholar 

  31. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013). https://doi.org/10.1016/j.jsv.2012.10.037

    Article  Google Scholar 

  32. Dong, G., Zhang, X., Xie, S., Yan, B., Luo, Y.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017). https://doi.org/10.1016/j.ymssp.2016.09.040

    Article  Google Scholar 

  33. Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017). https://doi.org/10.1007/s11071-016-3188-0

    Article  Google Scholar 

  34. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015). https://doi.org/10.1016/j.ymssp.2015.01.026

    Article  Google Scholar 

  35. Xu, J., Sun, X.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015). https://doi.org/10.1016/j.ijmecsci.2015.06.015

    Article  Google Scholar 

  36. Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87, 633–646 (2017). https://doi.org/10.1007/s11071-016-3065-x

    Article  Google Scholar 

  37. Lee, C.M., Goverdovskiy, V.N.: A multi-stage high-speed railroad vibration isolation system with “negative” stiffness. J. Sound Vib. 331, 914–921 (2012). https://doi.org/10.1016/j.jsv.2011.09.014

    Article  Google Scholar 

  38. Dumas, J.C., Lee, K.T., Winterflood, J., Ju, L., Blair, D.G., Jacob, J.: Testing of a multi-stage low-frequency isolator using Euler spring and self-damped pendulums. Class. Quantum Gravity 21, S965–S971 (2004). https://doi.org/10.1088/0264-9381/21/5/087

    Article  Google Scholar 

  39. Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J., Li, Y.L.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139, 34502 (2017). https://doi.org/10.1115/1.4035715

    Article  Google Scholar 

  40. Hu, F., Jing, X.: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn. 91, 157–185 (2018). https://doi.org/10.1007/s11071-017-3862-x

    Article  Google Scholar 

  41. Li, Y., Xu, D.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017). https://doi.org/10.1016/j.ijmecsci.2017.03.029

    Article  Google Scholar 

  42. Zhou, J., Wang, K., Xu, D., Ouyang, H., Fu, Y.: Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. J. Vib. Control 24, 3278–3291 (2018). https://doi.org/10.1177/1077546317703866

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by China Postdoctoral Science Foundation (2020M672476), the National Natural Science Foundation of China (11572116, 11972152, 11702228), the National Key R&D Program of China (2017YFB1102801) and the Hunan Provincial Innovation Foundation for Postgraduate. The first author, Kai Wang, would like to thank the support from the China Scholarship Council (CSC) which sponsors his visit to the University of Liverpool where this work is conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxi Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following are the detailed expressions of the trigonometry relationships.

$$ \left\{ {\begin{array}{*{20}l} {\cos^{3} \left( {\varOmega \tau } \right) = \frac{1}{4}\cos \left( {3\varOmega \tau } \right) + \frac{3}{4}\cos \left( {\varOmega \tau } \right)} \hfill \\ {\cos^{5} \left( {\varOmega \tau } \right) = \frac{1}{16}\cos \left( {5\varOmega \tau } \right) + \frac{5}{16}\cos \left( {3\varOmega \tau } \right) + \frac{5}{8}\cos \left( {\varOmega \tau } \right)} \hfill \\ {\cos^{7} \left( {\varOmega \tau } \right) = \frac{1}{64}\cos \left( {7\varOmega \tau } \right) + \frac{7}{64}\cos \left( {5\varOmega \tau } \right) + \frac{21}{64}\cos \left( {3\varOmega \tau } \right) + \frac{35}{64}\cos \left( {\varOmega \tau } \right)} \hfill \\ {\cos^{9} \left( {\varOmega \tau } \right) = \frac{1}{256}\cos \left( {9\varOmega \tau } \right) + \frac{9}{256}\cos \left( {7\varOmega \tau } \right) + \frac{9}{64}\cos \left( {5\varOmega \tau } \right)} \hfill \\ {\quad \quad \quad \quad \quad + \frac{21}{64}\cos \left( {3\varOmega \tau } \right) + \frac{63}{128}\cos \left( {\varOmega \tau } \right)} \hfill \\ {\cos^{11} \left( {\varOmega \tau } \right) = \frac{1}{1024}\cos \left( {11\varOmega \tau } \right) + \frac{11}{1024}\cos \left( {9\varOmega \tau } \right) + \frac{55}{1024}\cos \left( {7\varOmega \tau } \right)} \hfill \\ {\quad \quad \quad \quad \quad {\kern 1pt} + \frac{165}{1024}\cos \left( {5\varOmega \tau } \right) + \frac{165}{512}\cos \left( { 3\varOmega \tau } \right){ + }\frac{231}{512}\cos \left( {\varOmega \tau } \right)} \hfill \\ \end{array} } \right. $$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhou, J., Chang, Y. et al. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn 101, 755–773 (2020). https://doi.org/10.1007/s11071-020-05806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05806-0

Keywords

Navigation