Skip to main content
Log in

Global multistability and analog circuit implementation of an adapting synapse-based neuron model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Generally, neural networks involve the change with time of the neuron activities and that in strength of the synapses between neurons. This paper investigates the global multistability and analog circuit implementation of a two-dimensional adapting synapse-based neuron model in depth. The neuron model is non-autonomous and possesses periodically switchable equilibrium states associated with the externally imposed input closely. In every full periodic cycle of the input, the equilibrium stability has complex dynamical transitions between stable and unstable points via Hopf/fold bifurcations, resulting in the emergence of the global multistability that was not yet reported previously. Complex dynamics of the global coexisting multiple firing activities are demonstrated by multiple numerical measures, such as bifurcation plot, dynamical map, phase plane plot, and basin of attraction. Furthermore, an off-the-shelf discrete component-based circuit design is optimized to implement the neuron model and the outputs agree with the numerical results well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dong, D.W., Hopfield, J.J.: Dynamic properties of neural networks with adapting synapses. Netw. Comput. Neural Syst. 3(3), 267–283 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Li, C., Chen, G.: Coexisting chaotic attractors in a single neuron model with adapting feedback synapse. Chaos, Solitons Fractals 23(5), 1599–1604 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Chen, J., Li, C.: Chaos in a neuron model with adaptive feedback synapse: electronic circuit design. Acta Phys. Sin. 60(5), 050503 (2011)

    Google Scholar 

  4. Sugase-Miyamoto, Y., Liu, Z., Wiener, M.C., Optican, L.M., Richmond, B.J.: Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput. Biol. 4(5), e1000073 (2008)

    MathSciNet  Google Scholar 

  5. Berger, D.L., de Arcangelis, L., Herrmann, H.J.: Spatial features of synaptic adaptation affecting learning performance. Sci. Rep. 7, 11016 (2017)

    Google Scholar 

  6. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Barrio, R., Ibáñez, S., Pérez, L., Serrano, S.: Spike-adding structure in fold/hom bursters. Commun. Nonlinear Sci. Numer. Simul. 83, 105100 (2020)

    MathSciNet  Google Scholar 

  8. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., Sharma, S.K., Mondal, A.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13, 393–407 (2019)

    Google Scholar 

  9. Ribar, L., Sepulchre, R.: Neuromodulation of neuromorphic circuits. IEEE Trans. Circuits Syst. I 66(8), 3028–3040 (2019)

    Google Scholar 

  10. Bao, B.C., Yang, Q.F., Zhu, D., Bao, H., Xu, Q., Yu, Y.J., Chen, M.: Chaotic bursting dynamics and coexisting multi-stable firing patterns in 3D autonomous M-L model and microcontroller-based validations. Int. J. Bifurc. Chaos 29(10), 1950134 (2019)

    MATH  Google Scholar 

  11. Rahimian, E., Zabihi, S., Amiri, M., Linares-Barranco, B.: Digital implementation of the two-compartmental Pinsky–Rinzel pyramidal neuron model. IEEE Trans. Biomed. Circuits Syst. 12(1), 47–57 (2018)

    Google Scholar 

  12. Zhang, S., Cui, K., Zhang, X.Y., Shi, X., Ge, M.L., Zhao, M.K., Xu, G.Z., Yan, W.L.: Effect of transcranial ultrasonic–magnetic stimulation on two types of neural firing behaviors in modified Izhikevich model. IEEE Trans. Magn. 54(3), 5000204 (2018)

    Google Scholar 

  13. Heidarpur, M., Ahmadi, A., Ahmadi, M., Azghadi, M.R.: CORDIC-SNN: on-FPGA STDP learning with Izhikevich neurons. IEEE Trans. Circuits Syst. I 66(7), 2651–2661 (2019)

    Google Scholar 

  14. Tamura, S., Nishitani, Y., Hosokawa, C., Mizuno-Matsumoto, Y.: Asynchronous multiplex communication channels in 2-D neural network with fluctuating characteristics. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2336–2345 (2019)

    MathSciNet  Google Scholar 

  15. Jeyasothy, A., Sundaram, S., Sundararajan, N.: SEFRON: a new spiking neuron model with time-varying synaptic efficacy function for pattern classification. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1231–1240 (2019)

    Google Scholar 

  16. Liu, Y., Xu, W.J., Ma, J., Alzahrani, F., Hobiny, A.: A new photosensitive neuron model and its dynamics. Front. Inform. Technol. Electron. Eng. (2020). https://doi.org/10.1631/FITEE.1900606

    Article  Google Scholar 

  17. Ma, J., Yang, Z.Q., Yang, L.J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  18. Chen, C.J., Chen, J.Q., Bao, H., Chen, M., Bao, B.C.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  19. Bao, H., Liu, W., Hu, A.: Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95(1), 43–56 (2019)

    Google Scholar 

  20. Wouapi, M.K., Fotsin, B.H., Ngouonkadi, E.B.M., Kemwoue, F.F., Njitacke, Z.T.: Complex bifurcation analysis and synchronization optimal control for Hindmarsh-Rose neuron model under magnetic flow effect. Cogn. Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09606-5

    Article  Google Scholar 

  21. Lv, M., Wang, C.N., Ren, G.D., Ma, J.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  22. Wu, F.Q., Wang, C.N., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6(28), 41598 (2016)

    Google Scholar 

  23. Bao, H., Hu, A.H., Liu, W.B., Bao, B.C.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2020)

    Google Scholar 

  24. Xu, F., Zhang, J.Q., Fang, T.T., Huang, S.F., Wang, M.S.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)

    Google Scholar 

  25. Xu, Y., Jia, Y., Ge, M.Y., Lu, L.L., Yang, L.J., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Google Scholar 

  26. Parastesh, F., Rajagopal, K., Alsaadi, F.E., Hayat, T., Pham, V.-T., Hussain, I.: Birth and death of spiral waves in a network of Hindmarsh-Rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Mannan, Z.I., Adhikari, S.P., Yang, C., Budhathoki, R.K., Kim, H., Chua, L.: Memristive imitation of synaptic transmission and plasticity. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3458–3470 (2019)

    Google Scholar 

  28. Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Bennett, D.J., Li, Y., Harvey, P.J., Gorassini, M.: Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J. Neurophysiol. 86(4), 1972–1982 (2001)

    Google Scholar 

  30. Bao, H., Zhang, Y.Z., Liu, W.B., Bao, B.C.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100(1), 937–950 (2020)

    MATH  Google Scholar 

  31. Bao, B.C., Hu, A.H., Xu, Q., Bao, H., Wu, H.G., Chen, M.: AC induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(1), 1695–1706 (2018)

    Google Scholar 

  32. Pisarchik, A.N., Jaimes-Reátegui, R., García-Vellisca, M.A.: Asymmetry in electrical coupling between neurons alters multistable firing behavior. Chaos 28(3), 033605 (2018)

    MathSciNet  Google Scholar 

  33. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    MATH  Google Scholar 

  34. Linaro, D., Poggi, T., Storace, M.: Experimental bifurcation diagram of a circuit-implemented neuron model. Phys. Lett. A 374(45), 4589–4593 (2010)

    Google Scholar 

  35. Ntinas, V., Vourkas, I., Abusleme, A., Sirakoulis, G.C., Rubio, A.: Experimental study of artificial neural networks using a digital memristor simulator. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 5098–5110 (2018)

    Google Scholar 

  36. Pinto, R.D., Varona, P., Volkovskii, A.R., Szücs, A., Abarbanel, H.D., Rabinovich, M.I.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62(2), 2644–2656 (2000)

    Google Scholar 

  37. Adhikari, S.P., Kim, H., Budhathoki, R.K., Yang, C., Chua, L.O.: A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. IEEE Trans. Circuits Syst. I 62(1), 215–223 (2015)

    Google Scholar 

  38. Jiang, Y.N., Huang, P., Zhu, D.B., Han, R.Z., Liu, L.F., Liu, X.Y., Kang, J.F.: Design and hardware implementation of neuromorphic systems with RRAM synapses and threshold-controlled neurons for pattern recognition. IEEE Trans. Circuits Syst. I 65(9), 2726–2738 (2018)

    Google Scholar 

  39. Bao, B.C., Hou, L.P., Zhu, Y.X., Wu, H.G., Chen, M.: Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEÜ Int. J. Electron. Commun. 121, 153235 (2020)

    Google Scholar 

  40. Xu, Q., Zhang, Q.L., Qian, H., Wu, H.G., Bao, B.C.: Crisis-induced coexisting multiple attractors in a second-order nonautonomous memristive diode bridge-based circuit. Int. J. Circuit Theory Appl. 46(10), 1917–1927 (2018)

    Google Scholar 

  41. Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333–2343 (2015)

    MathSciNet  Google Scholar 

  42. Wang, N., Li, C.Q., Bao, H., Chen, M., Bao, B.C.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans. Circuits Syst. I 66(12), 4767–4779 (2019)

    Google Scholar 

  43. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 51777016, Grant 61801054, and Grant 61772447 and the Natural Science Foundation of Jiangsu Province, China, under Grant BK20191451.

Author information

Authors and Affiliations

Authors

Contributions

BB, YZ, CL, HB and QX are contributed equally to this work.

Corresponding author

Correspondence to Quan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Zhu, Y., Li, C. et al. Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn 101, 1105–1118 (2020). https://doi.org/10.1007/s11071-020-05831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05831-z

Keywords

Navigation