Skip to main content
Log in

A feasible neuron for estimating the magnetic field effect

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Biological neurons are capable of encoding a variety of stimuli, and the synaptic plasticity can be enhanced for activating appropriate firing modes in the neural activities. Artificial neural circuits are effective to reproduce the main biophysical properties of neurons when the nonlinear circuits composed of reliable electronic components with distinct physical properties are tamed to generate similar firing patterns as biological neurons. In this paper, a simple neural circuit is proposed to estimate the effect of magnetic field on the neural activities by incorporating two physical electronic components. A magnetic flux-controlled memristor and an ideal Josephson junction in parallel connection are used to percept the induction currents induced by the magnetic field. The circuit equations are obtained according to the Kirchhoff’s theorem and an equivalent neuron model is acquired by applying scale transformation on the physical variables and parameters in the neural circuit. Standard bifurcation analysis is calculated to predict possible mode transition and evolution of firing patterns. The Hamilton energy is also obtained to find its dependence on the mode selection in electronic activities. Furthermore, External magnetic field is applied to estimate the mode transition of neural activities because the phase error and the junction current across the Josephson junction can be adjusted to change the dynamics of the neural circuit. It is found that the biophysical functional neuron can present rapid and sensitive response to external magnetic field. Nonlinear resonance is obtained when stochastic phase error is induced by external time-varying magnetic field. The neural circuit can be suitable for further calculating the collective behaviors of neurons exposed to magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116(4), 473–496 (1952)

    Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116(4), 424–448 (1952)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: Propagation of electrical signals along giant nerve fibres. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 140(899), 177–183 (1952)

    Google Scholar 

  5. Chay, T.R.: Abnormal discharges and chaos in a neuronal model system. Biol. Cybern. 50(4), 301–311 (1984)

    MATH  Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Google Scholar 

  7. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. B Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  8. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  9. Gu, H., Pan, B., Chen, G., et al.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    MathSciNet  Google Scholar 

  10. Wang, V.Q., Liu, S.: A general model of ion passive transmembrane transport based on ionic concentration. Front. Comput. Neurosci. 12, 110 (2019)

    Google Scholar 

  11. Lu, Q., Gu, H., Yang, Z., et al.: Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech. Sin. 24(6), 593–628 (2008)

    MATH  Google Scholar 

  12. Gu, H., Pan, B., Xu, J.: Experimental observation of spike, burst and chaos synchronization of calcium concentration oscillations. EPL 106(5), 50003 (2014)

    Google Scholar 

  13. Gu, H.G., Chen, S.G.: Potassium-induced bifurcations and chaos of firing patterns observed from biological experiment on a neural pacemaker. Sci. China Technol. Sci. 57(5), 864–871 (2014)

    Google Scholar 

  14. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  15. Kim, H., Sah, M.P., Yang, C., et al.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I 59(10), 2422–2431 (2012)

    MathSciNet  Google Scholar 

  16. Chanthbouala, A., Garcia, V., Cherifi, R.O., et al.: A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012)

    Google Scholar 

  17. Yakopcic, C., Taha, T.M., Subramanyam, G., et al.: A memristor device model. IEEE Electron. Dev. Lett. 32(10), 1436–1438 (2011)

    Google Scholar 

  18. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Google Scholar 

  19. Wu, F., Wang, C., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6(1), 28 (2016)

    Google Scholar 

  20. Ma, J., Wu, F., Hayat, T., et al.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys. A 486, 508–516 (2017)

    MathSciNet  Google Scholar 

  21. Ge, M., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Google Scholar 

  22. Xu, Y., Jia, Y., Ge, M., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Google Scholar 

  23. Rostami, Z., Pham, V.T., Jafari, S., et al.: Taking control of initiated propagating wave in a neuronal network using magnetic radiation. Appl. Math. Comput. 338, 141–151 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Mvogo, A., Takembo, C.N., Fouda, H.P.E., et al.: Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381(28), 2264–2271 (2017)

    MathSciNet  Google Scholar 

  25. Rostami, Z., Jafari, S., Perc, M., et al.: Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 94, 679–692 (2018)

    Google Scholar 

  26. Wouapi, M.K., Fotsin, B.H., Ngouonkadi, E.B.M., et al.: Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect. Cogn. Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09606-5

    Article  Google Scholar 

  27. Njitacke, Z.T., Doubla, I.S., Mabekou, S., et al.: Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: coexistence of patterns and its analog implementation. Chaos Solitons Fract. 137, 109785 (2020)

    MathSciNet  Google Scholar 

  28. Njitacke, Z.T., Doubla, I.S., Kengne, J., et al.: Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos 30(2), 023101 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Njitacke, Z.T., Matze, C.L., Tsotsop M.F., et al.: Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3D generalized Hopfield neural network. Neural Process. Lett. 52, 267–289 (2020)

    Google Scholar 

  30. Parastesh, F., Rajagopal, K., Alsaadi, F.E., et al.: Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Rajagopal K., Moroz I., Karthikeyan A., et al.: Wave propagation in a network of extended Morris-Lecar neurons with electromagnetic induction and its local kinetics. Nonlinear Dyn. 100, 3625–3644 (2020)

    Google Scholar 

  32. Rajagopal, K., Parastesh, F., Azarnoush, H., et al.: Spiral waves in externally excited neuronal network: solvable model with a monotonically differentiable magnetic flux. Chaos 29(4), 043109 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Ma, J., Yang, Z., Yang, L., et al.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  34. Tang, J., Ma, J., Yi, M., et al.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83, 046207 (2011)

    Google Scholar 

  35. Tripathy, S.J., Padmanabhan, K., Gerkin, R.C., et al.: Intermediate intrinsic diversity enhances neural population coding. Proc. Natl. Acad. Sci. 110(20), 8248–8253 (2013)

    Google Scholar 

  36. Xu, Y., Wang, C., Lv, M., et al.: Local pacing, noise induced ordered wave in a 2D lattice of neurons. Neurocomputing 207, 398–407 (2016)

    Google Scholar 

  37. Perc, M.: Stochastic resonance on weakly paced scale-free networks. Phys. Rev. E 78, 036105 (2008)

    Google Scholar 

  38. Nishikawa, T., Motter, A.E., Lai, Y.C., et al.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003)

    Google Scholar 

  39. Mejias, J.F., Longtin, A.: Optimal heterogeneity for coding in spiking neural networks. Phys. Rev. Lett. 108, 228102 (2012)

    Google Scholar 

  40. Belykh, I.V., Belykh, V.N., Hasler, M.: Blinking model and synchronization in small-world networks with a time-varying coupling. Phys. D 195(1–2), 188–206 (2004)

    MathSciNet  MATH  Google Scholar 

  41. So, P., Cotton, B.C., Barreto, E.: Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. Chaos 18, 037114 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Buhmann, J., Schulten, K.: Influence of noise on the function of a “physiological” neural network. Biol. Cybern. 56(5–6), 313–327 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Tang, J., Zhang, J., Ma, J., et al.: Noise and delay sustained chimera state in small world neuronal network. Sci. China Technol. Sci. 62(7), 1134–1140 (2019)

    Google Scholar 

  44. Jin, W.Y., Wang, A., Ma, J., et al.: Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci. China Technol. Sci. 62, 2113–2119 (2019)

    Google Scholar 

  45. Neiman, A.B., Russell, D.F.: Synchronization of noise-induced bursts in noncoupled sensory neurons. Phys. Rev. Lett. 88, 138103 (2002)

    Google Scholar 

  46. Ermentrout, G.B., Galán, R.F., Urban, N.N.: Reliability, synchrony and noise. Trends Neurosci. 31(8), 428–434 (2008)

    Google Scholar 

  47. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Kim, H., Sah, M.P., Yang, C., et al.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuits Syst. I 59, 148–158 (2011)

    MathSciNet  Google Scholar 

  49. Adhikari, S.P., Kim, H., Budhathoki, R.K., et al.: A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. IEEE Trans. Circuits Syst. I 62, 215–223 (2014)

    Google Scholar 

  50. Hiltz, F.F.: Artificial neuron. Kybernetik 1(6), 231–236 (1963)

    Google Scholar 

  51. Harmon, L.D.: Artificial neuron. Science 129(3354), 962–963 (1959)

    Google Scholar 

  52. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Nguetcho, A.S.T., Binczak, S., Kazantsev, V.B., et al.: Experimental active spike responses of analog electrical neuron: beyond “integrate-and-fire” transmission. Nonlinear Dyn. 82, 1595–1604 (2015)

    Google Scholar 

  54. Wu, H., Bao, B., Liu, Z., et al.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)

    MathSciNet  Google Scholar 

  55. Hu, X., Liu, C., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)

    MathSciNet  Google Scholar 

  56. Korkmaz, N., Öztürk, İ., Kılıç, R.: The investigation of chemical coupling in a HR neuron model with reconfigurable implementations. Nonlinear Dyn. 86, 1841–1854 (2016)

    Google Scholar 

  57. Heidarpur, M., Ahmadi, A., Kandalaft, N.: A digital implementation of 2D Hindmarsh–Rose neuron. Nonlinear Dyn. 89, 2259–2272 (2017)

    Google Scholar 

  58. Liu, Y., Xu, W.J., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21(9), 1387–1396 (2020)

    Google Scholar 

  59. Zhang, X.F., Wang, C.N., Ma, J., et al.: Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B 34(25), 2050267 (2020)

    MathSciNet  Google Scholar 

  60. Chen, L., Zhou, Y., Yang, F., et al.: Complex dynamical behavior in memristor-capacitor systems. Nonlinear Dyn. 98, 517–537 (2019)

    Google Scholar 

  61. Wang, N., Zhang, G., Bao, H.: Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit. Nonlinear Dyn. 97, 1477–1494 (2019)

    MATH  Google Scholar 

  62. Tan, Q., Zeng, Y., Li, Z.: A simple inductor-free memristive circuit with three line equilibria. Nonlinear Dyn. 94, 1585–1602 (2018)

    Google Scholar 

  63. Yuan, F., Deng, Y., Li, Y., et al.: The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96, 389–405 (2019)

    MATH  Google Scholar 

  64. Zhang, J., Liao, X.: Effects of initial conditions on the synchronization of the coupled memristor neural circuits. Nonlinear Dyn. 95, 1269–1282 (2019)

    MATH  Google Scholar 

  65. Wu, F., Ma, J., Ren, G.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19(12), 889–903 (2018)

    Google Scholar 

  66. Gu, H., Pan, B., Li, Y.: The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn. 82, 1191–1210 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Wu, F., Zhang, Y., Zhang, X.: Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn. 98, 971–984 (2019)

    Google Scholar 

  68. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    MATH  Google Scholar 

  69. Takembo, C.N., Mvogo, A., Fouda, H.P.E., et al.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95, 1067–1078 (2019)

    MATH  Google Scholar 

  70. Xu, F., Zhang, J., Jin, M., et al.: Chimera states and synchronization behavior in multilayer memristive neural networks. Nonlinear Dyn. 94, 775–783 (2018)

    Google Scholar 

  71. Chang, W.H.: Measurement and calculation of Josephson junction device inductances. J. Appl. Phys. 52(3), 1417–1426 (1981)

    Google Scholar 

  72. Terzioglu, E., Beasley, M.R.: Complementary Josephson junction devices and circuits: a possible new approach to superconducting electronics. IEEE Trans. Appl. Supercond. 8(2), 48–53 (1998)

    Google Scholar 

  73. Crotty, P., Schult, D., Segall, K.: Josephson junction simulation of neurons. Phys. Rev. E 82, 011914 (2010)

    Google Scholar 

  74. Dana, S.K., Sengupta, D.C., Hu, C.K.: Spiking and bursting in Josephson junction. IEEE Trans. Circuits Syst. II 53(10), 1031–1034 (2006)

    Google Scholar 

  75. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)

    MathSciNet  MATH  Google Scholar 

  76. Jia, Y.B., Gu, H.G.: Phase noise-induced double coherence resonances in a neuronal model. Int. J. Mod. Phys. B 29, 1550142 (2015)

    MathSciNet  Google Scholar 

  77. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-019-1547-5

    Article  Google Scholar 

  78. Wu, F.Q., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63(4), 625–636 (2020)

    Google Scholar 

  79. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54, 552–554 (1986)

    Google Scholar 

  80. Sarasola, C., Torrealdea, F.J., D’Anjou, A., et al.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)

    Google Scholar 

  81. Huang, F., Bladon, J., Lagoy, R.C., et al.: A photosensitive surface capable of inducing electrophysiological changes in NG108-15 neurons. Acta Biomater. 12, 42–50 (2015)

    Google Scholar 

  82. Xu, Y., Guo, Y.Y., Ren, G.D., et al.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  Google Scholar 

  83. Xu, Y., Liu, M.H., Zhu, Z.G., et al.: Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29, 098704 (2020)

    Google Scholar 

Download references

Acknowledgements

This project is partially supported by National Natural Science Foundation of China under the Grant Nos. 11672122 and 12072139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, Y., Yao, Z. et al. A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn 102, 1849–1867 (2020). https://doi.org/10.1007/s11071-020-05991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05991-y

Keywords

Navigation