Skip to main content
Log in

Predefined-time control of distributed-order systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Distributed-order calculus can be understood as a further generalisation of integer- and fractional-order calculus. Such a general case allows the modelling and understanding of a more extensive engineering and physical systems class. This paper proposes a controller design that enforces the predefined-time convergence of the solution of a distributed-order dynamical system. Besides, a predefined-time sliding mode design for a general class of uncertain distributed-order dynamical system is proposed. A numerical study is presented to show the reliability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

Data will be available by request after the publication of this paper.

References

  1. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with mittag-leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Changjin, X., Liao, M., Li, P.: Bifurcation control for a fractional-order competition model of internet with delays. Nonlinear Dyn. 95(4), 3335–3356 (2019)

    Article  MATH  Google Scholar 

  3. Ding, C., Cao, J., Chen, Y.Q.: Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators. Nonlinear Dyn. 98(4), 3143–3153 (2019)

    Article  Google Scholar 

  4. Sabzalian, M.H., Mohammadzadeh, A., Lin, S., Zhang, W.: Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dyn. 98(3), 2375–2385 (2019)

    Article  MATH  Google Scholar 

  5. Wei, Y., Sheng, D., Chen, Y., Wang, Y.: Fractional order chattering-free robust adaptive backstepping control technique. Nonlinear Dyn. 95(3), 2383–2394 (2019)

    Article  MATH  Google Scholar 

  6. Li, Y., Chen, Y.Q.: Theory and implementation of weighted distributed order integrator. In Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 119–124. IEEE, 2012

  7. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calculus Appl. Anal. 6(3), 259–280 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Patnaik, S., Semperlotti, F.: Application of variable-and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. pp. 1–20, 2020

  9. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations-part i. Int. J. Appl. Math. 2(7), 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Michele, C., et al.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. (2003)

  11. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R Soc. A Math. Phys. Eng. Sci. 465(2106), 1869–1891 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Zaky, M.A., Machado, J.T.: Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput. Math. Appl. 79(2), 476–488 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Toaldo, B.: Lévy mixing related to distributed order calculus, subordinators and slow diffusions. J. Math. Anal. Appl. 430(2), 1009–1036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, L., Hai, P., Li, Y., Li, M.: Time domain analysis of the weighted distributed order rheological model. Mech. Time-Dependent Mater. 20(4), 601–619 (2016)

    Article  Google Scholar 

  17. Atanackovic, T.M.: On a distributed derivative model of a viscoelastic body. C.R. Mec. 331(10), 687–692 (2003)

    Article  MATH  Google Scholar 

  18. Atanackovic, T.M., Budincevic, M., Pilipovic, S.: On a fractional distributed-order oscillator. J. Phys. A: Math. Gen. 38(30), 6703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zaky, M.A., Tenreiro Machado, J.A.: On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 52, 177–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 91(4), 2667–2681 (2018)

    Article  MATH  Google Scholar 

  21. Chen, J., Li, C., Yang, X.: Chaos synchronization of the distributed-order lorenz system via active control and applications in chaotic masking. IJBC 28(10), 1850121–882 (2018)

    MathSciNet  Google Scholar 

  22. Jakovljević, B.B., Šekara, T.B., Rapaić, M.R., Jeličić, Z.D.: On the distributed order pid controller. AEU-Int. J. Electron. Commun. 79, 94–101 (2017)

    Article  Google Scholar 

  23. Jiao, Z., Chen, Y.-Q., Podlubny, I.: Stability. Simulation, Applications and Perspectives, London, Distributed-order dynamic systems (2012)

  24. Jiao, Z., Chen, Y.Q.: Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders. Comput. Math. Appl. 64(10), 3053–3058 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernández-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Muñoz-Vega, R., Hernández-Martínez, E.G.: Asymptotic stability of distributed order nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 48, 541–549 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taghavian, H., Tavazoei, M.S.: Stability analysis of distributed-order nonlinear dynamic systems. Int. J. Syst. Sci. 49(3), 523–536 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 35(1), i1–i29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polyakov, A., Fridman, L.: Stability notions and lyapunov functions for sliding mode control systems. J. Franklin Inst. 351(4), 1831–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ni, J., Liu, L., Liu, C., Xiaoyu, H.: Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems. Nonlinear Dyn. 89(3), 2065–2083 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Khanzadeh, A., Mohammadzaman, I.: Comment on ’fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems’. Nonlinear Dyn. 94(4), 3145–3153 (2018)

    Article  MATH  Google Scholar 

  33. Shirkavand, M., Pourgholi, M.: Robust fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design. Chaos Solitons Fractals 113, 135–147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pisano, A., Rapaić, M.R., Jeličić, Z.D., Usai, E.: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. Int. J. Robust Nonlinear Control 20(18), 2045–2056 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pisano, A., Rapaić, M.R., Usai, E., Jeličić, Z.D.: Continuous finite-time stabilization for some classes of fractional order dynamics. In: 2012 12th International Workshop on Variable Structure Systems, pp. 16–21. IEEE (2012)

  36. Jakovljević, B., Pisano, A., Rapaić, M.R., Usai, E.: On the sliding-mode control of fractional-order nonlinear uncertain dynamics. Int. J. Robust Nonlinear Control 26(4), 782–798 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Boulaaras, S.: Predefined-time convergence in fractional-order systems. Chaos Solitons Fractals 143, 110571 (2021)

    Article  MathSciNet  Google Scholar 

  38. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M. Second-order predefined-time sliding-mode control of fractional-order systems. Asian J. Control (2020)

  39. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  41. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Muñoz-Vázquez, A.-J., Sánchez-Orta, A., Parra-Vega, V.: A general result on non-existence of finite-time stable equilibria in fractional-order systems. J. Franklin Inst. 356(1), 268–275 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2), 547–551 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Muñoz-Vázquez, A.-J., Parra-Vega, V., Sánchez-Orta, A.: Non-smooth convex lyapunov functions for stability analysis of fractional-order systems. Trans. Inst. Meas. Control 41(6), 1627–1639 (2019)

    Article  MATH  Google Scholar 

  46. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory, Vol. 178. Springer, New York (2008)

  47. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, New York (2013)

    MATH  Google Scholar 

  48. Aldana-López, R., Gómez-Gutiérrez, D., Jiménez-Rodríguez, E., Sánchez-Torres, J.D., Defoort, M.: Enhancing the settling time estimation of a class of fixed-time stable systems. Int. J. Robust Nonlinear Control 29(12), 4135–4148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Louk’yanov, A.G., Utkin, V.I.: Method of reducing equations for dynamic systems to a regular form. Autom. Remote Control 42(4), 413–420 (1981)

    MathSciNet  Google Scholar 

  50. Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F.: The crone toolbox for matlab. In: IEEE International Symposium on Computer-Aided Control System Design, pp. 190–195. IEEE (2000)

Download references

Funding

The present research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

A.J. Muñoz-Vázquez: Writing original draft, editing and reviewing, investigation, simulation programming, formal analysis, methodology, conceptualisation, supervision. G. Fernández-Anaya: Writing original draft, editing and reviewing, investigation, formal analysis, methodology, conceptualisation, supervision. J.D. Sánchez-Torres: Writing original draft, editing and reviewing, investigation, formal analysis, methodology, conceptualisation. F. Meléndez-Vázquez: Editing and reviewing, investigation, formal analysis.

Corresponding author

Correspondence to Aldo Jonathan Muñoz-Vázquez.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest regarding the publication of this paper.

Code availability

Code will be available by request after the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Vázquez, A.J., Fernández-Anaya, G., Sánchez-Torres, J.D. et al. Predefined-time control of distributed-order systems. Nonlinear Dyn 103, 2689–2700 (2021). https://doi.org/10.1007/s11071-021-06264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06264-y

Keywords

Navigation