Skip to main content
Log in

Review on chaotic dynamics of memristive neuron and neural network

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The study of dynamics on artificial neurons and neuronal networks is of great significance to understand brain functions and develop neuromorphic systems. Recently, memristive neuron and neural network models offer great potential in the investigation of neurodynamics. Many chaotic dynamics including chaos, transient chaos, hyperchaos, coexisting attractors, multistability, and extreme multistability have been researched based on the memristive neurons and neural networks. In this review, we firstly introduce the basic definition of chaotic dynamics and review several traditional artificial neuron and neural network models. Then we categorize memristive neuron and neural network models with different biological function mechanisms into five types: memristive autapse neuron, memristive synapse-coupled bi-neuron network, memristive synaptic weight neural network, neuron under electromagnetic radiation, and neural network under electromagnetic radiation. The modeling mechanisms of each type are explained and described in detail. Furthermore, the pioneer works and some recent important papers related to those types are introduced. Finally, some open problems in this field are presented to further explore future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12(2), 105–118 (2011)

    Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  4. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Google Scholar 

  5. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Google Scholar 

  6. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  7. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Google Scholar 

  8. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16(2), 233–242 (1985)

    MATH  Google Scholar 

  9. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    MATH  Google Scholar 

  10. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 659–1671 (1997)

    Google Scholar 

  12. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  13. González, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurcat. Chaos 17(9), 3071–3083 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Yang, Z., Lu, Q.: Different types of bursting in Chay neuronal model. Sci. China Phys. Mech. 51(6), 687–698 (2008)

    Google Scholar 

  15. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin-Huxley neuron with delayed feedback. Phys. Rev. E 85(2), 21917 (2012)

    Google Scholar 

  16. Kang, Q., Huang, B., Zhou, M.: Dynamic behavior of artificial Hodgkin–Huxley neuron model subject to additive noise. IEEE Trans. Syst. Man Cybern. 46(9), 2083–2093 (2016)

    Google Scholar 

  17. Bao, H., Hu, A., Liu, W.: Bipolar pulse-induced coexisting firing patterns in two-dimensional Hindmarsh–Rose neuron model. Int. J. Bifurcat. Chaos 29(1), 1950006 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Yan, B., Panahi, S., He, S., et al.: Further dynamical analysis of modified Fitzhugh–Nagumo model under the electric field. Nonlinear Dyn. 101(1), 1–9 (2020)

    Google Scholar 

  19. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  20. Jo, S.H., Chang, T., Ebong, I., et al.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Google Scholar 

  21. Lv, M., Wang, C., Ren, G., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  22. Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Google Scholar 

  23. Li, Q., Tang, S., Zeng, H., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)

    MATH  Google Scholar 

  24. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  25. Xu, Y., Jia, Y., Ma, J., et al.: Synchronization between neurons coupled by memristor. Chaos Soliton Fract. 104, 435–442 (2017)

    Google Scholar 

  26. Bao, B., Hu, A., Bao, H., et al.: Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 3872573 (2018)

  27. Hu, X., Liu, C., Liu, L., et al.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2018)

    Google Scholar 

  28. Lin, H., Wang, C., Sun, Y., et al.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)

    Google Scholar 

  29. Wu, F., Gu, H., Li, Y., et al.: Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities. Commun. Nonlinear Sci. 79, 104924 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Wu, F., Gu, H.: Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns. Int. J. Bifurcat. Chaos 30(4), 2030009 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Liao, X.: Synchronization and chaos in coupled memristor-based FitzHugh–Nagumo circuits with memristor synapse. AEU-Int. J. Electron. C. 75, 82–90 (2017)

    Google Scholar 

  32. Xu, F., Zhang, J., Fang, T., et al.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)

    Google Scholar 

  33. Lv, M., Ma, J., Yao, Y., et al.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62(3), 448–457 (2019)

    Google Scholar 

  34. Yamakou, M.E.: Chaotic synchronization of memristive neurons: Lyapunov function versus Hamilton function. Nonlinear Dyn. 101(1), 487–500 (2020)

    MathSciNet  Google Scholar 

  35. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Google Scholar 

  36. Lin, H., Wang, C.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Pham, V.T., Jafari, S., Vaidyanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sc. 59(3), 358–363 (2016)

    Google Scholar 

  38. Njitacke, Z.T., Doubla, I.S., Mabekou, S., et al.: Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: coexistence of patterns and its analog implementation. Chaos Soliton Fract. 137, 109785 (2020)

    MathSciNet  Google Scholar 

  39. Yu, Y., Shi, M., Kang, H., et al.: Hidden dynamics in a fractional-order memristive Hindmarsh–Rose model. Nonlinear Dyn. 100(1), 891–906 (2020)

    MATH  Google Scholar 

  40. Njitacke, Z.T., Matze, C.L., Tsotsop, M.F., et al.: Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3D generalized Hopfield neural network. Neural Process. Lett. 52(1), 267–289 (2020)

    Google Scholar 

  41. Bao, B., Qian, H., Xu, Q., et al.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosc. 11, 81 (2017)

    Google Scholar 

  42. Chen, C., Bao, H., Chen, M., et al.: Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: numerical simulations and breadboard experiments. AEU-Int. J. Electron. C. 111, 152894 (2019)

    Google Scholar 

  43. Bao, H., Liu, W., Hu, A.: Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95(1), 43–56 (2019)

    Google Scholar 

  44. Njitacke, Z.T., Doubla, I.S., Kengne, J., et al.: Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos 30(2), 023101 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Lin, H., Wang, C., Yao, W., et al.: Chaotic dynamics in a neural network with different types of external stimuli. Commun. Nonlinear Sci. Numer. Simul. 90, 105390 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, S., Zheng, J., Wang, X., et al.: Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network. Nonlinear Dyn. 102(4), 2821–2841 (2020)

    Google Scholar 

  47. Li, Z., Zhou, H., Wang, M., et al.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Google Scholar 

  48. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  49. Njitacke, Z.T., Kengne, J.: Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int. J. Electron. C. 93, 242–252 (2018)

    Google Scholar 

  50. Xu, B., Lin, H., Wang, G.: Hidden multistability in a memristor-based cellular neural network. Adv. Math. Phys. 2020, 9708649 (2020)

    MathSciNet  Google Scholar 

  51. Lin, H., Wang, C., Hong, Q., et al.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3472–3476 (2020)

    Google Scholar 

  52. Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    MATH  Google Scholar 

  53. Takembo, C.N., Mvogo, A., Fouda, H.P., et al.: Modulated wave formation in myocardial cells under electromagnetic radiation. Int. J. Mod. Phys. B 32(14), 1850165 (2018)

    MathSciNet  Google Scholar 

  54. Aram, Z., Jafari, S., Ma, J., et al.: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simul. 44, 449–459 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Xiu, C., Zhou, R., Liu, Y.: New chaotic memristive cellular neural network and its application in secure communication system. Chaos Soliton Fract 141, 110316 (2020)

    MathSciNet  Google Scholar 

  56. Wang, W., Yu, X., Luo, X., et al.: Finite-time synchronization of chaotic memristive multidirectional associative memory neural networks and applications in image encryption. IEEE Access 6, 35764–35779 (2018)

    Google Scholar 

  57. Guo, T., Wang, L., Zhou, M., et al.: A multi-layer memristive recurrent neural network for solving static and dynamic image associative memory. Neurocomputing 334, 35–43 (2019)

    Google Scholar 

  58. Ma, J., Yang, Z., Yang, L., et al.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. 20(9), 639–659 (2019)

    Google Scholar 

  59. Zhang, X., Wang, C., Yao, W., et al.: Chaotic system with bondorbital attractors. Nonlinear Dyn. 97(4), 2159–2174 (2019)

    MATH  Google Scholar 

  60. Chen, X., Qian, S., Yu, F., et al.: Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity 2020, 8274685 (2020)

    Google Scholar 

  61. Sarbadhikari, S.N., Chakrabarty, K.: Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Med. Eng. Phys. 23(7), 447–457 (2001)

    Google Scholar 

  62. Yousefpour, A., Jahanshahi, H., Munoz, P., et al.: A fractional-order hyper-chaotic economic system with transient chaos. Chaos Soliton Fract. 130, 109400 (2020)

    MathSciNet  Google Scholar 

  63. Yu, F., Qian, S., Chen, X., et al.: Chaos-based engineering applications with a 6D memristive multistable hyperchaotic system and a 2D SF-SIMM hyperchaotic map. Complexity 2021, 6683284 (2021)

    Google Scholar 

  64. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1469–1476 (2015)

    Google Scholar 

  65. Wang, Z., Wei, Z., Sun, K., et al.: Chaotic flows with special equilibria. Eur. Phys. J. Spec. Top. 229(6), 905–919 (2020)

    Google Scholar 

  66. Deng, Q., Wang, C.: Multi-scroll hidden attractors with two stable equilibrium points. Chaos 29(9), 93112 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Lin, H., Wang, C., Yu, F., et al.: An extremely simple multi-wing chaotic system: dynamics analysis, encryption application and hardware implementation. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3047012

    Article  Google Scholar 

  68. Bayani, A., Rajagopal, K., Khalaf, A.J.M., et al.: Dynamical analysis of a new multistable chaotic system with hidden attractor: antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. A 383(13), 1450–1456 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Dong, Y., Wang, G., Iu, H.H.C., et al.: Coexisting hidden and self-excited attractors in a locally active memristor-based circuit. Chaos 30(10), 103123 (2020)

    MathSciNet  MATH  Google Scholar 

  70. Li, C., Sprott, J.C., Hu, W., et al.: Infinite multistability in a self-reproducing chaotic system. Int. J. Bifurcat. Chaos 27(10), 1750160 (2017)

    MathSciNet  MATH  Google Scholar 

  71. Wang, N., Zhang, G., Kuznetsov, N., et al.: Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 92, 105494 (2021)

  72. Mezatio, B.A., Motchongom, M.T., Tekam, B.R.W., et al.: A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability. Chaos Soliton Fract. 120, 100–115 (2019)

    MathSciNet  MATH  Google Scholar 

  73. Lai, Q., Kuate, P.D.K., Liu, F., et al.: An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circuits Syst. II 67(6), 1129–1133 (2020)

    Google Scholar 

  74. Chang, H., Li, Y., Chen, G., et al.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifurcat. Chaos 30(08), 2030019 (2020)

    MathSciNet  MATH  Google Scholar 

  75. Baysal, V., Sarac, Z., Yilmaz, E.: Chaotic resonance in Hodgkin–Huxley neuron. Nonlinear Dyn. 97(2), 1275–1285 (2019)

    MATH  Google Scholar 

  76. Davison, E.N., Aminzare, Z., Dey, B., et al.: Mixed mode oscillations and phase locking in coupled FitzHugh–Nagumo model neurons. Chaos 29(3), 33105 (2019)

    MathSciNet  MATH  Google Scholar 

  77. Xing, M., Song, X., Yang, Z., et al.: Bifurcations and excitability in the temperature-sensitive Morris–Lecar neuron. Nonlinear Dyn. 100(3), 2687–2698 (2020)

    Google Scholar 

  78. Yang, Y., Liao, X.: Filippov Hindmarsh–Rose neuronal model with threshold policy control. IEEE Trans. Neural Netw. 30(1), 306–311 (2019)

    Google Scholar 

  79. Etémé, A.S., Tabi, C.B., Mohamadou, A., et al.: Long-range memory effects in a magnetized Hindmarsh–Rose neural network. Commun. Nonlinear Sci. Numer. Simul. 84, 105208 (2020)

    MathSciNet  MATH  Google Scholar 

  80. Zhu, F., Wang, R., Aihara, K., et al.: Energy-efficient firing patterns with sparse bursts in the Chay neuron model. Nonlinear Dyn. 100(3), 2657–2672 (2020)

    Google Scholar 

  81. Lin, H., Wang, C., Chen, C., et al.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I. Reg. Pap. 68(8), 3397–3410 (2021)

    Google Scholar 

  82. Wang, L., Liu, W., Shi, H., et al.: Cellular neural networks with transient chaos. IEEE Trans. Circuits Syst. II Express Briefs 54(5), 440–444 (2007)

    Google Scholar 

  83. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  84. Adhikari, S.P., Sah, M.P., Kim, H., et al.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)

    Google Scholar 

  85. Chua, L.O.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 89–157 (2015)

    Google Scholar 

  86. Zhu, M., Wang, C., Deng, Q., et al.: Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurcat. Chaos 30(13), 2050184 (2020)

    MathSciNet  MATH  Google Scholar 

  87. Tan, Y., Wang, C.: A simple locally active memristor and its application in HR neurons. Chaos 30(5), 53118 (2020)

    MathSciNet  Google Scholar 

  88. Xie, W., Wang, C., Lin, H.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Google Scholar 

  89. Sah, M.P., Kim, H., Chua, L.O.: Brains are made of memristors. IEEE Circ. Syst. Mag. 14(1), 12–36 (2014)

    Google Scholar 

  90. Cai, W., Ellinger, F., Tetzlaff, R.: Neuronal synapse as a memristor: modeling pair-and triplet-based STDP rule. IEEE Trans. Biomed. Circuits Syst. 9(1), 87–95 (2014)

    Google Scholar 

  91. Li, Y., Zhong, Y., Xu, L., et al.: Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3(1), 1–7 (2013)

    Google Scholar 

  92. Liu, L., Xiong, W., Liu, Y., et al.: Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6(2), 1901012 (2020)

    MathSciNet  Google Scholar 

  93. Wang, C., Guo, S., Xu, Y., et al.: Formation of autapse connected to neuron andits biological function. Complexity 5436737 (2017)

  94. Guo, S., Tang, J., Ma, J., et al.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 4631602 (2017)

  95. Kim, S., Du, C., Sheridan, P., et al.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203–2211 (2015)

    Google Scholar 

  96. Zhang, G., Guo, D., Wu, F., et al.: Memristive autapse involving magnetic coupling and excitatory autapse enhance firing. Neurocomputing 379, 296–304 (2020)

    Google Scholar 

  97. Bao, H., Hu, A., Liu, W., et al.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. 31(2), 502–511 (2020)

    Google Scholar 

  98. Zhang, G., Wang, C., Alzahrani, F., et al.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018)

    MathSciNet  Google Scholar 

  99. Liu, Y., Nazarimehr, F., Khalaf, A.J.M., et al.: Detecting bifurcation points in a memristive neuron model. Eur. Phys. J. Spec. Top. 228(10), 1943–1950 (2019)

    Google Scholar 

  100. Zhang, J., Liao, X.: Effects of initial conditions on the synchronization of the coupled memristor neural circuits. Nonlinear Dyn. 95(2), 1269–1282 (2019)

    MATH  Google Scholar 

  101. Xu, Q., Tan, X., Zhu, D., et al.: Synchronous behavior for memristive synapse-connected Chay twin-neuron network and hardware implementation. Math. Probl. Eng. 2020, 8218740 (2020)

    Google Scholar 

  102. Bao, B., Yang, Q., Zhu, D., et al.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris–Lecar bi-neuron network. Nonlinear Dyn. 99(3), 2339–2354 (2020)

    Google Scholar 

  103. Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)

    Google Scholar 

  104. Bao, H., Zhang, Y., Liu, W., et al.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  105. Parastesh, F., Jafari, S., Azarnoush, H., et al.: Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 228(10), 2023–2033 (2019)

    Google Scholar 

  106. Wang, Z., Parastesh, F., Rajagopal, K., et al.: Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks. Chaos Soliton Fract. 134, 109702 (2020)

    MathSciNet  Google Scholar 

  107. Leng, Y., Yu, D., Hu, Y., et al.: Dynamic behaviors of hyperbolic-type memristor-based Hopfield neural network considering synaptic crosstalk. Chaos 30(3), 33108 (2020)

    MathSciNet  MATH  Google Scholar 

  108. Rajagopal, K., Hussain, I., Rostami, Z., et al.: Magnetic induction can control the effect of external electrical stimuli on the spiral wave. Appl. Math. Comput. 390, 125608 (2021)

    MathSciNet  MATH  Google Scholar 

  109. Wu, F., Wang, C., Jin, W., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    MathSciNet  MATH  Google Scholar 

  110. Ge, M., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)

    Google Scholar 

  111. Liu, Y., Ma, J., Xu, Y., et al.: Electrical mode transition of hybrid neuronal model induced by external stimulus and electromagnetic induction. Int. J. Bifurcat. Chaos 29(11), 1950156 (2019)

    MathSciNet  MATH  Google Scholar 

  112. Wu, J., Ma, S.: Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation. Nonlinear Dyn. 96(3), 1895–1908 (2019)

    MathSciNet  Google Scholar 

  113. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102(3), 1849–1867 (2020)

    Google Scholar 

  114. Zhang, S., Zheng, J., Wang, X., et al.: A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solitons Fractals 145, 110761 (2021)

    MathSciNet  Google Scholar 

  115. Bao, H., Liu, W., Ma, J., et al.: Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int. J. Bifurcat. Chaos 30(10), 2030029 (2020)

    MathSciNet  MATH  Google Scholar 

  116. Parastesh, F., Rajagopal, K., Karthikeyan, A., et al.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cogn. Neurodyn. 12(6), 607–614 (2018)

    Google Scholar 

  117. Zhang, S., Zheng, J., Wang, X., et al.: Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications. Chaos 31(1), 011101 (2021)

    MathSciNet  MATH  Google Scholar 

  118. Takembo, C.N., Mvogo, A., Fouda, H.P.E., et al.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95(2), 1067–1078 (2019)

    MATH  Google Scholar 

  119. Qu, L., Du, L., Hu, H., et al.: Pattern control of external electromagnetic stimulation to neuronal networks. Nonlinear Dyn. 102(4), 2739–2757 (2020)

    Google Scholar 

  120. Hu, X., Liu, C.: Bursting and synchronization of coupled neurons under electromagnetic radiation. Complexity 2019, 4835379 (2019)

    Google Scholar 

  121. Mostaghimi, S., Nazarimehr, F., Jafari, S., et al.: Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)

    MathSciNet  MATH  Google Scholar 

  122. Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., et al.: Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638), 481–487 (2017)

    Google Scholar 

  123. Merlini, M., Rafalski, V.A., Ma, K., et al.: Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat. Neurosci. 24(1), 19–21 (2021)

    Google Scholar 

  124. Zeeuw, C.I.D., Lisberger, S.G., Raymond, J.L.: Diversity and dynamism in the cerebellum. Nat. Neurosci. 24(2), 160–167 (2021)

    Google Scholar 

  125. Wu, F., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63(4), 1–12 (2020)

    Google Scholar 

  126. Yao, Z., Wang, C., Zhou, P., et al.: Regulating synchronous patterns in neurons and networks via field coupling. Commun. Nonlinear Sci. 95, 105583 (2021)

    MathSciNet  MATH  Google Scholar 

  127. Zhu, Z., Ren, G., Zhang, X., et al.: Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos Soliton Fract 151, 111203 (2021)

    MathSciNet  Google Scholar 

  128. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Soliton Fract 145, 110751 (2021)

    MathSciNet  Google Scholar 

  129. Lv, M., Ma, J., Yao, Y.G., et al.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62(3), 448–457 (2019)

    Google Scholar 

  130. Bao, B., Zhu, Y., Ma, J., et al.: Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64(5), 1107–1117 (2021)

    Google Scholar 

  131. Yao, W., Wang, C., Sun, Y., et al.: Exponential multistability of memristive Cohen–Grossberg neural networks with stochastic parameter perturbations. Appl. Math. Comput. 386, 125483 (2020)

    MathSciNet  MATH  Google Scholar 

  132. Yao, W., Wang, C., Sun, Y., et al.: Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control. Neurocomputing 404, 367–380 (2020)

    Google Scholar 

  133. Zhou, C., Wang, C., Sun, Y., et al.: Weighted sum synchronization of memristive coupled neural networks. Neurocomputing 403, 211–223 (2020)

    Google Scholar 

  134. Yao, W., Wang, C., Cao, J., et al.: Hybrid multisynchronization of coupled multistable memristive neural networks with time delays. Neurocomputing 363, 281–294 (2019)

    Google Scholar 

  135. Lakshmi, C., Thenmozhi, K., Rayappan, J.B., et al.: Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput. Appl. 32(15), 11477–11489 (2020)

    Google Scholar 

  136. Njitacke, Z.T., Isaac, S.D., Nestor, T., et al.: Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption. Neural Comput. Appl. 33(12), 6733–6752 (2021)

    Google Scholar 

  137. Liu, L., Zhang, L., Jiang, D., et al.: A simultaneous scrambling and diffusion color image encryption algorithm based on Hopfield chaotic neural network. IEEE Access 7, 185796–185810 (2019)

    Google Scholar 

  138. Pan, C., Hong, Q., Wang, X.: A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput. Aid D 40(3), 521–532 (2021)

    Google Scholar 

  139. Hong, Q., Yan, R., Wang, C., et al.: Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans. Biomed. Circuits Syst. 14(5), 1036–1050 (2020)

    Google Scholar 

  140. Carro-Pérez, I., Sánchez-López, C., González-Hernández, H.G.: Experimental verification of a memristive neural network. Nonlinear Dyn. 93(4), 1823–1840 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by The Major Research Project of the National Natural Science Foundation of China (91964108), The National Natural Science Natural Science Foundation of Hunan Province (2020JJ4218) Foundation of China (61971185), The Open Fund Project of Key Laboratory in Hunan Universities (18K010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wang, C., Deng, Q. et al. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn 106, 959–973 (2021). https://doi.org/10.1007/s11071-021-06853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06853-x

Keywords

Navigation