Skip to main content
Log in

Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, we construct modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices. These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous two-stage multisplitting iteration methods and their relaxed variants when the system matrix is an H  + -matrix. Numerical results show that in terms of computing time the modulus-based synchronous two-stage multisplitting relaxation methods are more efficient than the modulus-based synchronous multisplitting relaxation methods in actual implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63, 309–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Réseaux et Systèmes Répartis: Calculateurs Parallelès 13, 125–154 (2001)

    Google Scholar 

  5. Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79, 205–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput. Math. Appl. 32, 51–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. (2012). doi:10.1002/nla.1835

  8. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  9. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  10. Cvetković, Lj.: Some convergence conditions for a class of parallel decomposition-type linear relaxation methods. Appl. Numer. Math. 41, 81–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cvetković, Lj., Kostić, V.: New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods. Numer. Algorithms 42, 325–334 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cvetković, Lj. , Peña, J.M.: Minimal sets alternative to minimal Geršgorin sets. Appl. Numer. Math. 60, 442–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119, 141–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hadjidimos, A., Tzoumas, M.: The principle of extrapolation and the Cayley transform. Linear Algebra Appl. 429, 2465–2480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leenaerts, D.M.W., van Bokhoven, W.M.G.: Piecewise Linear Modeling and Analysis. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  19. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  20. O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J. Algebraic Discrete Methods 6, 630–640 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Szyld, D.B., Jones, M.T.: Two-stage and multisplitting methods for the parallel solution of linear systems. SIAM J. Matrix Anal. Appl. 13, 671–679 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Bai.

Additional information

Supported by The National Natural Science Foundation for Creative Research Groups (No. 11021101), The Hundred Talent Project of Chinese Academy of Sciences, The National Basic Research Program (No. 2011CB309703), and The National Natural Science Foundation (No. 91118001), People’s Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, ZZ., Zhang, LL. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer Algor 62, 59–77 (2013). https://doi.org/10.1007/s11075-012-9566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9566-x

Keywords

Navigation