Skip to main content
Log in

Determination of optimal convergence-control parameter value in homotopy analysis method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the framework of the Homotopy Analysis Method (HAM) the so-called convergence-control parameter \(c_{0}\) (Liao (Int J Non-Linear Mech 32:815–822, 1997) originally used the symbol \(\hbar \) to denote the auxiliary parameter. But, \(\hbar \) is well-known as Planck’s constant in quantum mechanics. To avoid misunderstanding, Liao (Commun Nonlinear Sci Numer Simulat 15:2003–2016, 2010) suggest to use the symbol \(c_0\) to denote the basic convergence-control parameter.) has a key role in convergence of obtained series solution of solving non-linear equations. In this paper a modified approach in the determining of the convergence-control parameter value \(c_{0}\) is proposed. The purpose of this paper is to find a proper convergence-control parameter \(c_0\) to get a convergent series solution, or a faster convergent one. This modified approach minimizes the norm of a discrete residual function, systematically, in which seeks to find an optimal value of the convergence-control parameter \(c_0\) at each order of HAM approximation, instead of the so-called \(c_0\)-curve process. The proved theorems and numerical results demonstrate the validity, efficiency, and performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Non-Linear Mech. 32, 815–822 (1997)

    Article  MATH  Google Scholar 

  2. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010)

    Article  MATH  Google Scholar 

  3. Liao, S.J.: On the proposed homotopy analysis technique for nonlinear problems and its applications. Ph. D. dissertation, Shanghai Jiao Tong University (1992)

  4. Liao, S.J.: Numerically solving nonlinear problems by the homotopy analysis method. Comput. Mech. 20, 530–540 (1997)

    Article  MATH  Google Scholar 

  5. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  6. Liao, S.J.: Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009)

    Article  MATH  Google Scholar 

  7. Liao, S.J.: The Homotopy Analysis Method in Nonlinear Differential Equations. Higher Education Press and Springer, Beijing and Heidelberg (2012)

    Book  Google Scholar 

  8. Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simulat. 13, 539–546 (2008)

    Article  MATH  Google Scholar 

  9. Abbasbandy, S.: Soliton solutions for the 5th-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Z., Zou, L., Zhang, H.: Applying homotopy analysis method for solving differential-difference equation. Phys. Lett. A 369, 77–84 (2007)

    Article  MATH  Google Scholar 

  11. Song, L., Zhang, H.Q.: Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys. Lett. A 367, 88–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Abbasbandy, S.: The application of the homotopy analysis method to solve a generalized Hirota Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  13. Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl-von Kármán equations governing deflections of a thin flat plate. Int. J. Non-linear Mech. 47, 1–6 (2012)

    Article  Google Scholar 

  14. Abbasbandy, S., Tan, Y., Liao, S.J.: Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 188, 1794–1800 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun. Nonlinear Sci. Numer. Simulat. 14, 3530–3536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izadian, J., Mohammadzade Attar, M., Jalili, M.: Numerical solution of deformation equations in homotopy analysis method. Appl. Math. Sci. 6, 357–367 (2012)

    MATH  Google Scholar 

  17. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simulat. 15, 2293–2302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010)

    Article  MATH  Google Scholar 

  19. Hayat, T., Ellahi, R., Ariel, P.D., Asghar, S.: Homotopy solutions for the channel flow of a third grade fluid. Nonlinear Dyn. 45, 55–64 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayat, T., Naz, R., Sajid, M.: On the homotopy solution for Poiseuille flow of a fourth grade fluid. Commun. Nonlinear Sci. Numer. Simulat. 15, 581–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, S., Jeffrey, D.J.: An efficient analytical approach for solving fourth order boundary value problems. Comput. Phys. Commun. 180, 2034–2040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, S., Jeffrey, D.J.: Approximate solutions to a parameterized sixth order boundary value problem. Comput. Math. Appl. 59, 247–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yabushita, K., Yamashita, M., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A: Math. Theoretical 40, 8403–8416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, Y.Y., Chueng, K.F.: Homotopy solution for nonlinear differential equations in wave propagation problems. Wave Motion 46, 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, Y.Y., Chueng, K.F.: Two-parameter homotopy method for nonlinear equations. Numer. Algorithms 53, 555–572 (2010)

    Article  MathSciNet  Google Scholar 

  26. Marinca, V., Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Trans. 35, 710–715 (2008)

    Article  Google Scholar 

  27. Marinca, V., Hersanu, N., Bota, C., Marinca, B.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. Appl. Math. Lett. 22, 245–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niu, Z.,Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2026–2036 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algorithms (2012). doi:10.1007/s11075-012-9554-1

    MathSciNet  Google Scholar 

  30. Greenspan, D., Casulli, V.: Numerical Analysis for Applied Mathematics, Science, and Engineering. Addison-Wesley (1988)

  31. Ha, S.N.: A nonlinear shooting method for two-point boundary value problems. Comput. Math. Appl 42, 1411–1420 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Doedel, E.: Finite difference methods for nonlinear two-point boundary-value problems. SIAM J. Numer. Anal 16, 173–185 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deacon, A.G., Osher, S.: Finite-element method for a boundary-value problem of mixed type. SIAM J. Numer. Anal 16, 756–778 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Turkyilmazoglu, M.: Some issues on HPM and HAM methods: a convergence scheme. Math. Comput. Model. 53, 1929–1936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Turkyilmazoglu, M.: Numerical and analytical solutions for the flow and heat transfer near the equator of an MHD boundary layer over a porous rotating sphere. Int. J. Therm. Sci. 50, 831–842 (2011)

    Article  Google Scholar 

  36. Turkyilmazoglu, M.: Solution of the Thomas-Fermi equation with a convergent approach. Commun. Nonlinear Sci. Num. Simulat. 17, 4097–4103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbasbandy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasbandy, S., Jalili, M. Determination of optimal convergence-control parameter value in homotopy analysis method. Numer Algor 64, 593–605 (2013). https://doi.org/10.1007/s11075-012-9680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9680-9

Keywords

Mathematics Subject Classifications (2010)

Navigation