Skip to main content
Log in

Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The efficient numerical solution of the large linear systems of fractional differential equations is considered here. The key tool used is the short–memory principle. The latter ensures the decay of the entries of the inverse of the discretized operator, whose inverses are approximated here by a sequence of sparse matrices. On this ground, we propose to solve the underlying linear systems by these approximations or by iterative solvers using sequence of preconditioners based on the above mentioned inverses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellavia, S., Bertaccini, D., Morini, B.: Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 33 (5), 2595–2619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comp. Phys. 182(2), 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43(2), 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. ETNA 18, 49–64 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Bertaccini, D., Durastante, F.: Interpolating preconditioners for the solution of sequence of linear systems. Comp. Math. Appl. 72, 1118–1130 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bertaccini, D., Filippone, S.: Sparse approximate inverse preconditioners on high performance gpu platforms. Comp. Math. Appl. 71(3), 693–711 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bridson, R., Tang, W.-P.: Refining an approximate inverse. J. Comput. Appl. Math. 123(1), 293–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bridson, R., Tang, W.-P.: Multiresolution approximate inverse preconditioners. SIAM J. Sci. Comput. 23(2), 463–479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Simoncini, V., Verani, M.: On the decay of the inverse of matrices that are sum of kronecker products. Lin. Alg. Appl. 452, 21–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ċelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput Phys. 231(4), 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dalton, S., Bell, N., Olson, L., Garland, M.: Cusp: generic parallel algorithms for sparse matrix and graph computations, version 0.5.0 (2014) http://cusplibrary.github.io/

  12. D’Ambra, P., Serafino, D.D., Filippone, S.: Mld2p4: a package of parallel algebraic multilevel domain decomposition preconditioners in fortran 95. ACM T. Math. Software 37(3), 30 (2010)

    MathSciNet  Google Scholar 

  13. Demko, S., Moss, W.F., Smith, P.W.: Decay rates for inverses of band matrices. Math. Comput. 43(168), 491–499 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl Math. 206(1), 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, H., Li, C., Chen, Y.: High–order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durastante, F.: Interpolant update of preconditioners for sequences of large linear systems. In: Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS ’15), vol. 41, pp. 40–47. WSEAS Press (2015)

  17. Filippone, S., Colajanni, M.: Psblas: a library for parallel linear algebra computation on sparse matrices. ACM T. Math. Software 26(4), 527–550 (2000)

    Article  Google Scholar 

  18. Fornberg, B.: Classroom note: calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gutknecht, M.H.: Variants of BICGSTAB for matrices with complex spectrum. SIAM J. Sci. Comput. 14(5), 1020–1033 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaffard, S.: Propriétés Des Matrices ≪Bien Localisées ≫ Près De Leur Diagonale Et Quelques Applications. In: Ann. I. H. Poincare-An, vol. 7, pp 461–476 (1990)

  21. Krishtal, I., Strohmer, T., Wertz, T.: Localization of matrix factorizations. Found. Comput. Math. 15(4), 931–951 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lampret, V.: Estimating the sequence of real binomial coefficients. J. Ineq. Pure and Appl. Math. 7(5)

  23. Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230(9), 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C., Zeng, F.: Numerical methods for fractional calculus, vol. 24. CRC Press (2015)

  25. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ng, M.K., Pan, J.: Approximate inverse circulant–plus–diagonal preconditioners for Toeplitz–plus–diagonal matrices. SIAM J. Sci. Comput. 32(3), 1442–1464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci (2006)

  29. Pan, J., Ke, R., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal–times–Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Academic Press (1998)

  31. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228(8), 3137–3153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. T. R. Soc. A 371(1990), 20120153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Popolizio, M.: A matrix approach for partial differential equations with Riesz space fractional derivatives. Eur. Phys. J.-Spec. Top. 222(8), 1975–1985 (2013)

    Article  Google Scholar 

  36. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)

  37. Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  38. Wendel, J.: Note on the gamma function. Am. Math. Mon. 55(9), 563–564 (1948)

    Article  MathSciNet  Google Scholar 

  39. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bertaccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertaccini, D., Durastante, F. Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses. Numer Algor 74, 1061–1082 (2017). https://doi.org/10.1007/s11075-016-0186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0186-8

Keywords

Mathematics Subject Classification (2010)

Navigation