Skip to main content
Log in

Study by Means of the Mass Spectrometry of Volatile Species in the Oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and Ferritic/Martensitic Steel Samples at 923 K in Ar+(10 to 80%)H2O Vapor Atmosphere for New-Materials Design

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Mass spectrometry was used to study in-situ the role of volatile species in the oxidation of reference materials Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and ferritic/martensitic steels (P91 and P92) at high temperatures. All samples were heated to 650°C at 1 atm in a mixture of Ar with 10–80% range H2O vapor. Oxidation times varied between 100 and 200 h. Cr(g), CrH(g), CrO(g), CrOH(g), CrO2(g), CrOOH(g) and Cr(OH)2(g) chromium-oxy-hydroxides species were identified during the corrosion of Cr oxidized in a steam atmosphere of Ar+80%H2O for 100 h. CrO(g), CrO3(g) and Cr(OH)6(g) species were present in mass loss of a Cr2O3 sample in similar conditions for 200 h of oxidation. However a mass gain was observed when Cr2O2(g) and CrO(OH)4(g) species were present. Simultaneously, thermogravimetric studies of the oxidation kinetics of the samples were made with one in-situ thermobalance. The P91 and P92 steels were studied with afore-mentioned techniques at the beginning of breakaway oxidation. During 100 h of oxidation at 650°C in Ar+10%H2O atmosphere: Cr(OH)6(g), CrOOH(g) and CrO2(OH)2(g) chromium oxy-hydroxides volatile species were detected in the P91 steel, and Cr(OH)2(g), Cr(OH)3(g), Cr(OH)4(g), CrO(OH)2(g) and CrO(OH)4(g), species in the P92 steel. The morphology/composition and structure of the oxidized steel samples were also characterized using SEM/EDAX and XRD techniques, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Hald J., (2004). Materials at High Temperatures 21(1): 41

    Article  CAS  Google Scholar 

  2. Khanna A. S., Rodríguez P., Gnanamoorthy J. B., (1986). Oxidation of Metals 26(3/4):171

    Article  CAS  Google Scholar 

  3. Rowlands P. C., Garrett J. C. P., Hicks F. G., Lister S., Lloyd B., Twelves J. A., (1974) In: Holmes D. R., Hill R. B., Wyatt L. M., (eds) Corrosion of Steels in CO2. Proc. BNES, Reading, pp. 193

    Google Scholar 

  4. Khanna A. S., Kofstad P., (1990) International Conference Microscopy on Oxidation. Institute of Materials, London, p. 113

    Google Scholar 

  5. Asteman H., Segerdahl K., Svensson J. E., Johansson L. G., (2001). Materials Science Forum 369–372: 277

    Google Scholar 

  6. H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 57 (3/4), 193 (2002)

    Article  CAS  Google Scholar 

  7. Fryburg G. C., Miller R. A., Kohl F. J., Stearns C. A., (1977). Journal of the Electrochemical Society:Solid-State Science and Technology 124(11): 1738

    CAS  Google Scholar 

  8. Kim Y.-W., Belton G. R., (1974). Metailurgical Transactions 5: 1811

    CAS  Google Scholar 

  9. Bulewicz E. M., Padley P. J., (1971). Proceedings of the Royal Society London A 323: 377

    CAS  Google Scholar 

  10. Glemser O., Müller A., (1964). Zeitschrift fur anorganische and allgemeine Chemie 334: 151

    Google Scholar 

  11. Farber M., Srivastava R. D., (1973). Combustion Flame 20: 43

    CAS  Google Scholar 

  12. Glemser O., Müller A., Stocker U., (1964). Zeitschrift fur anorganische und allgemeine Chemie 344: 25

    Article  Google Scholar 

  13. McDonald J. D., Margrave J. L., (1968). Journal of Inorganic Nuclear Chemistry 30: 665

    Article  CAS  Google Scholar 

  14. Asteman H., Svensson J. E., Johansson L. G., Norell M., (1999). Oxidation of Metals 52 (1/2): 95

    Article  CAS  Google Scholar 

  15. Asteman H., Segerdahl K., Svensson J.-E., Johansson L.-G., (2001). Materials Science Forum 369–372: 277

    Article  Google Scholar 

  16. Graham H. C., Davies H. H., (1971). Journal of the American Ceramic Society 54: 89

    Article  CAS  Google Scholar 

  17. Stearns C. A., Kohl F. J., Fryburg G. C., (1974). Journal of the Electrochemical Society 121: 945

    CAS  Google Scholar 

  18. Ebbinghaus B. B., (1993). Combustion and Flame 93: 119

    Article  CAS  Google Scholar 

  19. Gulbransen E. A., Andrew K. F., (1957). Journal of the Electrochemical Society 104(6): 766

    Google Scholar 

  20. Kim Y.-W., Belton G. R., (1974). Metallurgical Transaction 5: 1811

    CAS  Google Scholar 

  21. Bulewicz E. M., Padley P. J., (1971). Proceeding of the Royal Society London Series A 323: 377

    CAS  Google Scholar 

  22. Farber M., Srivastava R. D., (1973). Combustion and Flame 20: 43

    Article  CAS  Google Scholar 

  23. Gorokhov L. N., Milushin M. I., Emelyanov A. M., (1990). High Temperature Science 26: 395

    Google Scholar 

  24. Johnson J. R. T., Panas I., (1998). Inorganic Chemistry A 102: 10423

    Google Scholar 

  25.  87-2334 @ 2001 JCPDS-International Centre for Diffraction Data

  26.  89-0597 @ 2001 JCPDS-International Centre for Diffraction Data

Download references

Acknowledgment

The authors acknowledge the financial support of the European Community under project N° ENK5-CT2002-00808-SUPERCOAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Pérez-Trujillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Trujillo, F.J., Castañeda, S.I. Study by Means of the Mass Spectrometry of Volatile Species in the Oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and Ferritic/Martensitic Steel Samples at 923 K in Ar+(10 to 80%)H2O Vapor Atmosphere for New-Materials Design. Oxid Met 66, 231–251 (2006). https://doi.org/10.1007/s11085-006-9031-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9031-0

Keywords

Navigation