Skip to main content
Log in

Cyclic Oxidation of P91 by Thermogravimetry and Investigation of Integrity of Scale by “Transient-Mass-Gain” Method

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The growth and degradation of the oxide scale on modified 9Cr–1Mo ferritic steel was studied at 1123 K using a thermogravimetric balance by employing the “transient-mass-gain method” in conjunction with the adaptation of a cyclic-oxidation procedure. The total duration of the oxidation was 1000 h. The experiment revealed that the cracking of the scale was initiated when the average thickness was 72 μm. Spallation occurred when the average thickness was 75 μm. The rate of spallation was found to be enhanced as the scale thickens and attained a higher rate after 90 μm. The rate constants for the different stages of oxidation were found to be different. The specimen was examined by SEM, EDS and XRD. The scale morphology revealed outwardly protruded growth, a uniform adherent oxide layer and a spalled region. Four oxide phases were identified; Cr2O3, Fe2O3, (FeCr)2O3 and FeCr2O4. The spall contained more (FeCr)2O3 whereas the adherent scale was more FeCr2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. J. Simms and J. E. Oakey, Materials at High Temperatures 13(2), 75 (1995).

    CAS  Google Scholar 

  2. M. Schuetze, Oxidation of Metals 24(3/4), 199 (1985).

    Article  CAS  Google Scholar 

  3. H. E. Evans and R. C. Lobb, Corrosion Science 24(3), 209 (1984).

    Article  CAS  Google Scholar 

  4. S. Rajendran Pillai, P. Shankar, and H. S. Khatak, High Temperature Materials and Processes 23(3), 196 (2004).

    Google Scholar 

  5. S. Rajendran Pillai, Corrosion Reviews 23(4–6), 277 (2005).

    Google Scholar 

  6. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion-Materials and Corrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  7. R. Hales, Werkstoffe und Korrosion-Materials and Corrosion 29, 939 (1978).

    Google Scholar 

  8. G. C. Wood, M. G. Hobby, and B. Vaszko, Journal of the Iron and Steel Institute 202, 685 (1964).

    CAS  Google Scholar 

  9. C. Lille and R. F. A. Jargelius-Pettersson, Materials at High Temperatures 17(2), 287 (2000).

    CAS  Google Scholar 

  10. M. Schuetze, Materials Science and Technology 6, 32 (1990).

    CAS  Google Scholar 

  11. S. Rajendran Pillai, N. Sivai Barasi, and H. S. Khatak, Oxidation of Metals 54(3/4), 211 (2000).

    Article  Google Scholar 

  12. H. E. Evans, G. P. Mitchel, R. C. Lobb, and D. R. J. Owen, Proceedings of the Royal Society of London Series A 440(1908), 1 (1993).

    Google Scholar 

  13. T. Ohashi and T. Harada, Oxidation of Metals 46(3/4), 235 (1996).

    Article  CAS  Google Scholar 

  14. V. V. Belousov and B. S. Bokshstein, Oxidation of Metals 50(5/6), 389 (1998).

    Article  CAS  Google Scholar 

  15. F. J. Perez, F. Pedraza, M. P. Hierro, J. Balmain, and G. Bonnet, Surface and Coatings Technology 153(1), 49 (2002).

    Article  CAS  Google Scholar 

  16. L. Mikkelsan and S. Linderoth, Materials Science and Engineering A 361(1/2), 198 (2003).

    Article  CAS  Google Scholar 

  17. U. Krupp, S. Y. Chang, A. Schimke, and H.-J. Christ, in Lifetime Modelling of High Temperature Corrosion Processes. M. Schuetze, W. J. Quadakkers, and J. R. Nicholls, eds. (EFC 34, Maney Publishing, London, 2001), p. 148.

  18. A. F. Smith, Corrosion Science 21(7), 517 (1981).

    Article  CAS  Google Scholar 

  19. S. N. Basu and G. J. Yurek, Oxidation of Metals 36(3/4), 281 (1991).

    Article  CAS  Google Scholar 

  20. M. Schuetze, Oxidation of Metals 44, 29 (1995).

    Article  CAS  Google Scholar 

  21. J. R. Nicholls and M. J. Bennett, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 437.

  22. J. L. Smialek, J. A. Nesbitt, C. A. Barett, and C. E. Lowell, Report NASA/TM-2000-209769.

  23. J. R. Nichols and M. J. Bennett, Materials at High Temperatures 17(3), 413 (2000).

    Google Scholar 

  24. D. Monceau and D. Poquillon, Oxidation of Metals 61(1/2), 143 (2004).

    Article  CAS  Google Scholar 

  25. J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe, Corrosion Science 20, 351 (1980).

    Article  CAS  Google Scholar 

  26. S. Y. Chang, U. Krupp, and H. J. Christ, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 63.

  27. P. Vangeli and B. Ivarsson, Materials Science Forum 369–372, 785 (2001).

    Google Scholar 

  28. P. Vangeli, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 198.

  29. A. Raffaitin, D. Monceau, E. Andrieu, and F. Crabos, Acta Materialia 54(17), 4473 (2006).

    Article  CAS  Google Scholar 

  30. J.-C. Salabura and D. Monceau, Materials Science Forum 461–464, 689 (2004).

    Article  Google Scholar 

  31. J. Herman, Journal of Less Common Metals 100, 321 (1984).

    Article  Google Scholar 

  32. W. L. Phillips Jr., Transactions of the American Society for Metals 57, 33 (1964).

    CAS  Google Scholar 

  33. D. R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, London, 1999–2000), p. 4.

Download references

Acknowledgements

The authors wish to acknowledge the help rendered by Mrs. M. Radhika, Physical Metallurgy Section, Materials Characterization Group, in SEM and EDS analyses and Mrs. S. Kalavathy, Materials Science Division in the XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran Pillai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran Pillai, S., Dayal, R.K. Cyclic Oxidation of P91 by Thermogravimetry and Investigation of Integrity of Scale by “Transient-Mass-Gain” Method. Oxid Met 69, 131–142 (2008). https://doi.org/10.1007/s11085-007-9087-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9087-5

Keywords

Navigation