Skip to main content
Log in

Oxidation Characteristics and Oxide Layer Evolution of Alloy 617 and Haynes 230 at 900 °C and 1100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To evaluate the oxidation resistance of Alloy 617 and Haynes 230, oxidation tests were performed at 900 °C and 1100 °C in air and helium environments. Scale characterizations were assessed on specimens exposed to air using thin-film XRD, XPS, SEM and EDX. Oxidation resistance was dependent on the stability of the surface oxide layer, which can be affected by minor alloying elements such as Ti and Mn. At 900 °C, for Alloy 617, a mixture of the extensive NiO–Cr2O3 double layer and isolated NiO–NiCr2O4–Cr2O3 triple layer were observed at a steady-state condition. For Haynes 230, a MnCr2O4 layer was formed on top of the Cr2O3 layer, resulting in a lower oxidation rate. At 1100 °C, both alloys showed a double layer consisting of an inner Cr2O3 and outer MnCr2O4 or TiO2. The spallation of outer layer and subsequent volatilization of the Cr2O3 layer produced a rugged surface and interface as well as internal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Nieder, in Predictions on an HTR Coolant Composition After Operational Experience with Experimental Reactors, IAEA IWGGCR-2 Specialist Meeting on Coolant Chemistry (1980), p. 144.

  2. K. Natesan, A. Purohit, and S. W. Tam, in Materials Behaviour of in HTGR Environments, NUREC/CR-6824 (2003).

  3. H. J. Christ, U. Kunecke, K. Meyer, and H. G. Sockel, Materials Science and Engineering 87, 161 (1987).

    Article  CAS  Google Scholar 

  4. J. Smialek and G. Meier, Superalloy II, Chapt. 11, 1st edn. (Wiley Interscience, New York, 1987).

  5. L. W. Graham, Journal of Nuclear Materials 171, 76 (1990).

    Article  ADS  CAS  Google Scholar 

  6. B. Huchtemann, Materials Science and Engineering A121, 623 (1989).

    Google Scholar 

  7. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat, and F. Valdivieso, Journal of Nuclear Materials 362, 248 (2007).

    Article  ADS  CAS  Google Scholar 

  8. C. Cabet, J. Chapovalo, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, and M. Pijolat, Journal of Nuclear Materials 375, 173 (2008).

    Article  ADS  CAS  Google Scholar 

  9. C. Jang, D. Lee, and D. Kim, in Proceedings of Structural Materials for Innovative Nuclear Systems, 4–6 June 2007, Karlsruhe, Germany.

  10. A. Barrett and C. E. Lowell, Oxidation of Metals 11, 199 (1977).

    Article  CAS  Google Scholar 

  11. K. B. Sankara Rao, Material Science and Engineering A104, 37 (1998).

    Google Scholar 

  12. V. N. Shah, S. Majumdar, and K. Natesan, in Review and Assessment of Codes and Procedures for HTGR Components, NUREC/CR-6816 (2003).

  13. Haynes International, in Haynes 230 Alloy and 617 Alloy Product Brochure (2004).

  14. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  15. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn., Chapt. 5 (Cambridge University Press, New York, 2006).

  16. C. Wagner, Journal of Electrochemical Society 103, 571 (1956).

    Article  CAS  Google Scholar 

  17. G. M. Ecer and G. H. Meier, Scripta Metallurgica 7, 1189 (1973).

    Article  CAS  Google Scholar 

  18. D. R. Sigler, Oxidation of Metals 46, 335 (1996).

    Article  CAS  Google Scholar 

  19. B. Gleeson and M. A. Harper, Proceedings of an EFC workshop 34, 167 (2001).

    CAS  Google Scholar 

  20. C. L. Angerman, Oxidation of Metals 5, 149 (1972).

    Article  CAS  Google Scholar 

  21. C. Jang, D. Lee, and D. Kim, International Journal of Pressure Vessels and Piping 85, 368 (2008).

    Article  CAS  Google Scholar 

  22. F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle, and B. D. Bastow, Corrosion Science 21, 599 (1981).

    Article  CAS  Google Scholar 

  23. F. Rouillard, C. Cabet, K. Wolski, and M. Pijolat, Oxidation of Metals 68, 133 (2007).

    Article  CAS  Google Scholar 

  24. D. M. England and A. V. Virkar, Journal of the Electrochemical Society 146, 3196 (1996).

    Article  Google Scholar 

  25. L. Jian, P. Jian, H. Bing, and G. Xie, Journal of Power Sources 159, 641 (2006).

    Article  CAS  Google Scholar 

  26. G. R. Holcomb and D. E. Alman, in The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys, DOE/ARC-05-02 (2005).

Download references

Acknowledgement

This study was funded by the Basic Atomic Energy Research Institute (BAERI) program and by the i-NERI program of the Ministry of Education, Science and Technology of Korea. Part of the funding was provided by the Second Phase BK21 Program of the same Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changheui Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Jang, C. & Ryu, W.S. Oxidation Characteristics and Oxide Layer Evolution of Alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxid Met 71, 271–293 (2009). https://doi.org/10.1007/s11085-009-9142-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9142-5

Keywords

Navigation